首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface modification by poly(ethylene glycol) (PEGylation) has been acknowledged as a powerful strategy in minimizing non-specific reactions for biomedical devices. Once applied into manufacture of drug/gene delivery systems, PEGylation has demonstrated to significantly improve their biocompatibility and stealthiness in physiological environment. Nonetheless, reluctant cell membrane affinities thus cellular uptake efficiencies owing to PEGylation brought up further issues that are imperative to be resolved. Pertain to this PEGylation dilemma, we attempted to introduce peptide (GPLGVRG) linkage between block copolymer of PEG-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} PAsp(DET), wherein the cationic PAsp(DET) could self-assemble with pDNA into nanoscaled complex core. Noteworthy was the peptide linkage whose amino acids sequence could be specifically recognized and degraded by matrix metalloproteinases (MMPs) (overexpressed in extracellular milieu of tumors). Therefore, our subsequent studies validated facile detachment of PEGylation from the aforementioned polyplex micelles upon treatment of MMPs, which elicited improved cytomembrane affinities and cellular uptake efficiencies. In addition, promoted escape from endosome entrapment was also confirmed through direct endosome membrane destabilization by PAsp(DET), which was further elucidated to be attributable to dePEGylation as well as elevated charged density of PAsp(DET) in acidic endosomes. These benefits from dePEGylation eventually contributed to promoted gene expression at the affected cells and potent tumor growth suppression based on anti-angiogenic approach. Therefore, our developed strategy has provided a facile approach in overcoming the dilemma of PEGylation, which could be informative in design of drug/gene delivery systems.  相似文献   

2.
PEG-based polyplex micelles, which can detach the surrounding PEG chains responsive to the intracellular reducing environment, were developed as nonviral gene vectors. A novel block catiomer, PEG-SS-P[Asp(DET)], was designed as follows: (i) insertion of biocleavable disulfide linkage between PEG and polycation segment to trigger PEG detachment and (ii) a cationic segment based on poly(aspartamide) with a flanking N-(2-aminoethyl)-2-aminoethyl group, P[Asp(DET)], in which the Asp(DET) unit acts as a buffering moiety inducing endosomal escape with minimal cytotoxicity. The polyplex micelles from PEG-SS-P[Asp(DET)] and plasmid DNA (pDNA) stably dispersed in an aqueous medium with a narrowly distributed size range of approximately 80 nm due to the formation of hydrophilic PEG palisades while undergoing aggregation by the addition of 10 mM dithiothreitol (DTT) at the stoichiometric charge ratio, indicating the PEG detachment from the micelles through the disulfide cleavage. The PEG-SS-P[Asp(DET)] micelles showed both a 1-3 orders of magnitude higher gene transfection efficiency and a more rapid onset of gene expression than PEG-P[Asp(DET)] micelles without disulfide linkages, due to much more effective endosomal escape based on the PEG detachment in endosome. These findings suggest that the PEG-SS-P[Asp(DET)] micelle may have promising potential as a nonviral gene vector exerting high transfection with regulated timing and minimal cytotoxicity.  相似文献   

3.
Cationic polymers have received much attention as promising nonviral vectors for gene transfer. However, development of polymers with low cell toxicities and high transfection efficiencies continue to be a significant problem and a major hurdle to their success. Poly‐D /L aspartate‐diethylenetriamine poly(D /L Asp‐DET) polymers were synthesized and evaluated as nonviral gene delivery agents. Poly(D /L Asp‐DET) polymers display endosome buffering capacity. The polymers condense plasmid DNA above N:P ratios of 1 and form polyplex particles of ~50–100 nm, with zeta potentials between neutral and +40 mV. Transmission electron microscopy shows the polyplexes to be uniform in size and shape. Polyplexes maintain the structural integrity of DNA following incubation in nucleases and also show high transfection efficiencies with minimal toxicity in both HCT‐116 and PC‐3 cell culture. However, it is found that these poly(D /L Asp‐DET)/DNA polyplexes immediately aggregate in salt and serum conditions, making them unsuitable for use in vivo. Therefore, the polyplexes were further modified by covalent addition of polyethylene glycol (PEG). Introduction of this second step produces PEG‐polyplexes of uniform size (below 100 nm), with neutral zeta potentials that are also stable in both salt and serum conditions. These results suggest poly(D /L Asp‐DET) cationic polymers as potentially safe and efficient nonviral gene delivery agents. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Syntheses of Phosphonic- and Phosphinic Analogues of Pantothenic Acid Ethyl Ester and of the Phosphonic Analogue of Pantetheine The replacement of amino acids in peptides by phosphono-analogous (aminoalkyl)phosphonic acids 1 , (2-aminoethyl)phosphonic acid ( 2 ) and substituted derivatives has been an important aspect of peptides research in the last years. In pantothenic acid ( 3 ), there is a peptide linkage between (2R)-2,4-dihydroxy-3,3-dimethylbutyric acid and the amino group of β-alanine, and in pantetheine ( 4 ), there is a second peptide linkage between the β-alanine and cysteamine. The synthesis of phosphono and phosphino analogues of pantothenic acid ethyl ester, where the β-alanine is replaced by the diethyl ester of (2-aminoethyl)phosphonic acid and the ethyl ester of (2-aminoethyl)methylphosphonic acid, respectively, and the syntheses of the phosphono analogue of pantetheine, where the β-alanine is replaced by (2-aminoethyl)phosphonic acid, are described.  相似文献   

5.
A range of peptidomimetic dendrimers based on 1,3,5-benzenetricarbonyl trichloride and tris(2-aminoethyl)amine central cores has been synthesised through the facile ring-opening of N-acylisatins with amino acids, alcohols and other amines.  相似文献   

6.
7.
Gene therapy has attracted much attention in vascular tissue engineering. However, it is still challenging to develop a novel gene carrier with multifunction to overcome the barriers in gene delivery. Herein, the multitargeting gene complexes were developed based on methoxy‐poly(ethylene glycol)‐b‐poly‐(D,L‐lactide‐co‐glycolide) (mPEG‐b‐PLGA), poly(d ,l ‐lactide‐co‐glycolide)‐g‐polyethylenimine‐g‐CAGW (PLGA‐g‐PEI‐g‐CAGW), cell‐penetrating peptide YGRKKRRQRRR (TAT), nuclear localization signals (NLS), and pEGFP‐ZNF580 (pDNA) with the purpose of enhancing the transfection of endothelial cells (ECs). The low cytotoxic multitargeting gene complexes could be easily prepared by adjusting the weight ratio of mPEG‐b‐PLGA and PLGA‐g‐PEI‐g‐CAGW. Meanwhile, CAGW peptide with selectively ECs‐targeting ability and TAT‐NLS peptide sequence with both cell‐penetrating ability and nuclear targeting capacity were simultaneously introduced into gene complexes in order to enable them with the multitargeting function so as to improve their gene delivery capacity. The pDNA loading capacity of these gene complexes was confirmed by agarose gel electrophoresis assay. MTT results demonstrated that the relatively cell viability of the multitargeting gene complexes was higher than those of other groups. These multitargeting gene complexes showed higher internalization and transfection efficiencies than other groups. These results revealed that CAGW and TAT‐NLS peptide sequences benefited for efficient gene delivery. Furthermore, the wound healing assay demonstrated that the multitargeting gene complexes could promote the proliferation and migration of ECs. These results collectively demonstrated that CAGW and TAT‐NLS peptides functionalized gene delivery system could effectively enhance the transfection of ECs, which has great potential in vascular tissue engineering.  相似文献   

8.
Novel multifunctional nanoparticles containing a magnetic Fe3O4@SiO2 sphere and a biocompatible block copolymer poly(ethylene glycol)-b-poly(aspartate) (PEG-b-PAsp) were prepared. The silica coated on the superparamagnetic core was able to achieve a magnetic dispersivity, as well as to protect Fe3O4 against oxidation and acid corrosion. The PAsp block was grafted to the surface of Fe3O4@SiO2 nanoparticles by amido bonds, and the PEG block formed the outermost shell. The anticancer agent doxorubicin (DOX) was loaded into the hybrid nanoparticles via an electrostatic interaction between DOX and PAsp. The release rate of DOX could be adjusted by the pH value.  相似文献   

9.
本文采用电喷雾质谱研究了带羟乙基侧臂二乙烯三胺Pde~Ⅱ配合物分别与含有硫原子侧链或咪唑侧链的二肽Met-Ala、乙酰化三肽AcGHG和AcGHL,十一肽Mp-11和三十肽氧化胰岛素B链的相互作用,发现该配合物能较好地结合这些多肽.但未能促使它们发生水解反应.比较相应铜配合物及二乙烯三胺铜配合物的切割性能,提示羟乙基侧臂单独难以实现相邻肽键的切割,高配位数金属中心对肽键羰基的活化与羟基的协同进攻是该类配合物切割多肽的可能机制.研究可为人工金属肽酶的发展提供新的设计战略.  相似文献   

10.
Delivery systems based on nanoparticles (NPs) have shown great potential to reduce side effects and improve the therapeutic efficacy. Herein, we report the one-pot synthesis of poly(ethylene glycol)-mediated zeolitic imidazolate framework-8 (ZIF-8) NPs for the co-delivery of an anticancer drug (i.e., doxorubicin) and a cell penetrating peptide containing histidine and arginine (i.e., H4R4) to improve the efficacy of therapeutic delivery. The cargo-encapsulated ZIF-8 NPs are pH-responsive, which are stable at neutral pH and degradable at acidic pH to release the encapsulated cargos. The released H4R4 can help for endosome/lysosome escape to enhance the cytotoxicity of the encapsulated drugs. In vivo studies demonstrate that the co-delivery of doxorubicin and H4R4 peptides can efficiently inhibit tumor growth without significant side effects. The reported strategy provides a new perspective on the design of drug delivery systems and brings more opportunities for biomedical applications.  相似文献   

11.
《化学:亚洲杂志》2017,12(2):176-180
Traditional enzyme–prodrug therapy (EPT) is a two‐step strategy, which has many serious deficiencies, so having a one‐step EPT treatment becomes a problem of immediate interest. This study aims to achieve an effective co‐delivery of horseradish peroxidase (HRP) as a kind of enzyme for prodrug activation and ethyl 3‐indoleacetate (EIA) as anticancer prodrug. A ternary block copolymer PEG‐PAsp(AED)‐CA consisting of poly(ethylene glycol) (PEG), reduction‐sensitive poly (N ‐(2,2′‐dithiobis(ethylamine)) aspartamide) PAsp(AED), and cholic acid (CA) was synthesized and assembled into spherical micelles which encapsulated EIA in its hydrophobic core and HRP in a reduction‐sensitive interlayer. TEM photographs show that the polymer micelle is around 40 nm, and the cell survival rate test shows that the EIA/HRP polymer micelle is highly lethal to human lung adenocarcinoma cells. Thus, co‐delivery of EIA and HRP demonstrates great potential in cancer therapy, offering a structurally simple and highly tunable platform for the synchronous delivery of enzymes and prodrugs in EPT.  相似文献   

12.
Summary: A poly(aspartic acid)‐block‐polylactide (PAsp‐block‐PLA) diblock copolymer was synthesized through the polymerization of β‐benzyl‐L ‐aspartate‐N‐carboxyanhydride [Asp(OBzl)‐NCA] with amino‐terminating polylactide (NH2‐PLA) as a macroinitiator. The chain length of the PAsp segment could be easily controlled by changing the monomer/initiator ratio. Dynamic light scattering measurements of PAsp‐block‐PLA aqueous solutions revealed the formation of polymeric micelles. Changes in the micelles as a function of pH were investigated.

The structure and formation of micelles of the poly(aspartic acid)‐block‐polylactide (PAsp‐block‐PLA) diblock copolymers synthesized here.  相似文献   


13.
A facile synthesis of ebselen analogs, having Se?O(ester) secondary bonding interaction, is described. The reaction of dimethyl 2-(bromoselanyl)-5-tert-butylisophthalate (4) with different diprotic amines such as ethanolamine, 2-chloroethylamine, and N,N′-dimethylethylenediamine afforded the ebselen analogs. Reaction of 4 with ethylenediamine and tris(2-aminoethyl)amine resulted in the formation of bis- and tris-ebselen derivatives, respectively.  相似文献   

14.
We previously reported that transferrin (Tf)-modified liposomes (Tf-L) additionally modified with a cholesterylated pH-sensitive fusogenic peptide (Chol-GALA) can release an encapsulated aqueous phase marker to cytosol via endosomal membrane fusion. However, further obstacles need to be overcome to bring the Tf-L to the level of a viral-like gene delivery system. In this study, we developed a novel packaging method to encapsulate condensed plasmid DNA into PEgylated Tf-L (Tf-PEG-L) to form a core–shell-type nanoparticle. The most difficult challenge was to provide a mechanism of escape for the condensed core from endosome to cytosol in the presence of polyethylene glycol (PEG). We hypothesized that a membrane-introduced Chol-GALA and a PEgylated GALA would interact synergistically to induce membrane fusion between liposome and endosome. By simultaneously incorporating Chol-GALA into the membrane of Tf-PEG-L and GALA at tips of PEG chains, a condensed core was released into cytosol, and transfection acitivty increased 100-fold. We concluded that topological control was responsible for the synergistic effect of GALA derivatives introduced on Tf-PEG-L. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Kentaro Sasaki and Kentaro Kogure contributed equally to this work.  相似文献   

15.
PEG修饰是改善蛋白质及肽类药物药代动力学特性的有效途径。然而与蛋白质相比,肽类化合物的分子较小,PEG的分子体积较大,其长链很可能会遮蔽肽的活性位点。因此,肽类化合物PEG修饰的位置和数量对于保持肽的生物活性至关重要。为阐明PEG修饰的位置与肽生物活性之间的关系,对肽类药物日达仙(胸腺素α1,Tα1)进行了定点修饰。Tα1具有α-螺旋、β-转角和无规卷曲的结构区域。分别在这些区域选择不同的位点进行PEG修饰。PEG的定点修饰是通过引入Cys,利用其-SH与mPEG-MAL的特异性反应而实现的。Con A刺激下的脾细胞产生IFN-γ试验的初步结果表明,PEG修饰对活性的影响与修饰的位置有一定的关系,大多数情况下,PEG修饰能保持Tα1的免疫活性。PEG修饰的位点对于保持肽的生物活性是很重要的。  相似文献   

16.
BACKGROUND: The vancomycin group of glycopeptide antibiotics is active against a wide range of gram-positive bacteria. The increasing resistance to vancomycin is the result of a change of an amide linkage (D-Ala-D-Ala) to an ester linkage (D-Ala-D-Lactate) in the bacterial cell-wall precursors. RESULTS: We have used a peptide terminating in the sequence -Lys-D-Ala-D-Lactate linked by its amino terminus to a docosanoyl (C22) acyl chain and anchored in a supported lipid monolayer to mimic the surface of vancomycin-resistant enterococci. Surface plasmon resonance analysis was then used to investigate the binding of glycopeptide group antibiotics to this surface. Vancomycin, which dimerises weakly, bound with low affinity, whereas strongly dimerising antibiotics, such as chloroeremomycin, bound with higher affinities. Antibiotics that have attached hydrophobic groups, such as teicoplanin and biphenylchloroeremomycin (LY307599), bound to the lipid monolayer. This resulted in an enhanced affinity for the lipid-anchored peptide at the surface relative to affinities for an analogous non-anchored peptide in solution. CONCLUSIONS: We have shown that the affinities of glycopeptide antibiotics for a model of the surface of a vancomycin-resistant bacterium are enhanced relative to affinities determined in free solution. We have also shown that antibiotics that have membrane anchors bind tightly to the model surface and that this feature is an important determinant of the ability of an antibiotic to kill vancomycin-resistant enterococci.  相似文献   

17.
In this work, selectivity mechanism of APP-IP inhibitor (β-amyloid precursor protein-derived inhibitory peptide) over matrix metalloproteinases (MMPs including MMP-2, MMP-7, MMP-9 and MMP-14) was investigated by molecular modeling methods. Among MMPs, MMP-2 is the most favorable one for APP-IP interacting based on our calculations. The predicted binding affinities can give a good explanation of the activity difference of inhibitor APP-IP. In Comparison with MMP-2/APP-IP complex, the side chain of Tyr214MMP-7 makes the binding pocket so shallow that the whole side chain of Tyr3APP-IP can not be fully embraced, thus unfavorable for the N-terminal of APP-IP binding to MMP-7. The poor selectivity of APP-IP toward MMP-9 is mainly related with the decrease of interaction between the APP-IP C-terminal and MMP-9 due to the bulky side chains of Pro193 and Gln199, which is in agreement with experiment. The mutations at residues P193A and Q199G of MMP-9 alternate the binding pattern of the C-terminal of APP-IP by forming two new hydrogen bonds and hydrophobic interactions with MMP-9. The mutants favor the binding affinity of MMP-9 largely. For MMP-14/APP-IP, the large steric effect of Phe204MMP-14 and the weak contributions of the polar residues Asn231MMP-14 and Thr190MMP-14 could explain why MMP-14 is non-selective for APP-IP interacting. Here, the molecular modeling methods were successfully employed to explore the selective inhibitor of MMPs, and our work gives valuable information for future rational design of selective peptide inhibitors toward individual MMP.  相似文献   

18.
The impact of the conversion of carboxylates in peptides to basic or fixed charge sites on the outcome of electron transfer dissociation (ETD) is evaluated with respect to ETD efficiency and the number of diagnostic sequence ions. Four reagents, including benzylamine (BA), 1-benzylpiperazine (BZP), carboxymethyl trimethylammonium chloride hydrazide (GT), and (2-aminoethyl)trimethylammonium chloride hydrochloride (AETMA), were used for the carboxylate derivatization, with the first two replacing the acidic carboxylate groups with basic functionalities and the latter two introducing fixed charge sites. The ETD efficiencies and Xcorr scores were compared for both nonderivatized and derivatized tryptic and Glu-C peptides from cytochrome c. Derivatization of the carboxylate increases the average charge states, the number of fragment ions, and the dissociation efficiencies of peptides, especially for the fixed charge reagent, AETMA.  相似文献   

19.
Conjugation of cytokine-neutralizing monoclonal antibodies (mAb) to hyaluronic acid (HA) having Mw of 1.6 MDa was previously shown to be an effective strategy for localized delivery to sites of inflammation. Despite the disparity in size of the mAb and HA, the mAb–HA conjugate was found bind tumor necrosis factor-α (TNFα) as strongly as the non-conjugated antibody, suggesting conjugation to this charged polysaccharide can provide an alternative to poly(ethylene glycol) (PEG) conjugation, which has been shown to reduce binding interactions for many proteins. To explore conjugation chemistries more systematically, we report a study on a model peptide inhibitor of tumor necrosis factor-α to investigate the effects of site-specific conjugation to HA and PEG. We compared the binding affinities of a variety of WP9QY peptide–polymer conjugates for TNFα in order to examine the effects of PEG molecular weight as well as the effects of PEG versus functionalized hyaluronic acid (HA) conjugation. The results indicate that the binding affinity of the PEG conjugates decreases in comparing PEG with mass 2 k, 10 k, and 30 k, which was attributed to PEG shrouding of the peptide, while conjugation to a 66 kDa HA chain preserved peptide binding affinity. We attribute this difference to the increased solubility of HA compared to PEG, potentially due to the carboxylic acid functional groups. In addition, the results demonstrate that conjugation to HA via a short PEG linker significantly enhances the association rate kon, which may reflect an increased peptide accessibility. By balancing both the advantages associated with the PEG conjugates and with the HA conjugates, the HA–PEG2k–WP9QY conjugate was able to improve the binding affinity of the peptide for TNFα by a factor of two. Optimization of polymer chemistry could be used to improve delivery of protein therapeutics for localized and systemic administration.  相似文献   

20.
This paper reports the production of glycopolymers via a simple and flexible method. A novel glycopolymer with a hyperbranched poly(amido amine) core and a sugar shell (HPAA-GLc) was synthesized by using thiol-ene click reaction via facile one-pot method. Hyperbranched poly(amido amine) with vinyl terminals was first synthesized by Michael addition polymerization of N,N′-methylene bisacrylamide (MBA) with 1-(2-aminoethyl) piperazine (AEPZ). Subsequently, thiol-ene click reaction between vinyl units of hyperbranched poly(amido amine) and thio-glucose was performed in situ. Based on the NMR result, all the vinyl groups reacted with thiol-glucose in 120 min. Strong photoluminescence emission was observed from the aqueous solution of HPAA-GLc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号