首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《中国化学快报》2023,34(1):107569
We report herein an I2/PhI(OAc)2 catalytic system for the pragmatic construction of CN bonds through CH/NH oxidative coupling protocol. Divergent pyrrolo[2,3-b]indoles were efficiently prepared via I2-catalyzed intramolecular C–H amination reactions from (E/Z)-2-indolylenamines under metal-free conditions. Various functional groups are tolerated under mild reaction conditions and the resulting pyrrolo[2,3-b]indoles were obtained with mostly good to excellent yields. It was interesting to observe that both the (E)- and (Z)-isomers of the starting materials were efficiently transformed into the targeted product. The I+-mediated catalytic cycle was proposed based on mechanistic studies for this reaction.  相似文献   

2.
Pathophysiological shifts in the cerebral levels of sphingolipids in Alzheimer''s disease (AD) patients suggest a link between sphingolipid metabolism and the disease pathology. Sphingosine (SP), a structural backbone of sphingolipids, is an amphiphilic molecule that is able to undergo aggregation into micelles and micellar aggregates. Considering its structural properties and cellular localization, we hypothesized that SP potentially interacts with amyloid-β (Aβ) and metal ions that are found as pathological components in AD-affected brains, with manifesting its reactivity towards metal-free Aβ and metal-bound Aβ (metal–Aβ). Herein, we report, for the first time, that SP is capable of interacting with both Aβ and metal ions and consequently affects the aggregation of metal-free Aβ and metal–Aβ. Moreover, incubation of SP with Aβ in the absence and presence of metal ions results in the aggravation of toxicity induced by metal-free Aβ and metal–Aβ in living cells. As the simplest acyl derivatives of SP, N-acetylsphingosine and 3-O-acetylsphingosine also influence metal-free Aβ and metal–Aβ aggregation to different degrees, compared to SP. Such slight structural modifications of SP neutralize its ability to exacerbate the cytotoxicity triggered by metal-free Aβ and metal–Aβ. Notably, the reactivity of SP and the acetylsphingosines towards metal-free Aβ and metal–Aβ is determined to be dependent on their formation of micelles and micellar aggregates. Our overall studies demonstrate that SP and its derivatives could directly interact with pathological factors in AD and modify their pathogenic properties at concentrations below and above critical aggregation concentrations.

The reactivity of sphingosine and acetylsphingosines towards both metal-free and metal-treated amyloid-β is demonstrated showing a correlation of their micellization properties.  相似文献   

3.
A metal-free, acid-free, direct and eco-friendly nitration methodology has been developed. A tert-butyl nitrite efficiently promotes the direct CH nitration of electron-rich arenes with good to excellent yields and regioselectivities. The practical utility of this protocol has been demonstrated in gram-scale nitration of crown ether and mono nitration of Sesamin. A plausible free radical mechanism is proposed based on detailed experimental observations.  相似文献   

4.
《Tetrahedron letters》2019,60(52):151328
An oxidative multi-functionalization of azaarenes with benzylic CH bonds of methylarenes via iodination/N-benzylation/amidation cascade, to produce N-benzyl-4-iodoisoquinolin-1(2H)-ones and N-benzyl-3-iodoquinolin-2(1H)-ones is developed. The molecular iodine plays a triple role in activating benzylic sp3 CH bond of methylbenzenes, accelerating the oxidation process and serving as iodination reagent. This reaction utilizes cheap and readily available azaarenes and methylarenes as starting materials and proceeds under metal-free conditions to construct C-I, CN and CO bonds consecutively and afford iodo(iso)quinolinones efficiently.  相似文献   

5.
A visible-light-mediated metal-free thiocyanate radical addition/ipso-cyclization/oxidation cascade reaction for the synthesis of thiocyanato-containing azaspirotrienediones from N-phenylpropynamides is described. Cheap and readily available ammonium thiocyanate was used as a precursor to the thiocyanate free radical, which undergoes a radical addition reaction with the alkyne, followed by selective ipso-cyclization and oxidation to afford the dearomatized products. No product of ortho-cyclization was detected. The reaction completes the synthesis of C–S, C–C, and CO bonds in one pot, with abundant and renewable air oxygen as the sole sacrificial reagent and oxygen source.  相似文献   

6.
《Tetrahedron》2019,75(22):3053-3061
A visible-light induced metal-free thiocyanate radical addition/intramolecular cyclization cascade reaction for the synthesis of thiocyanato-containing isoquinolinediones from N-alkyl-N-methacryloylbenzamides is described. The organic dye 9-mesityl-10-methylacridinium perchlorate (Acr+-Mes ClO4) is used as a photocatalyst, and cheap and readily available ammonium thiocyanate is used to provide thiocyanate radical by single-electron transfer pathway. The reaction completes the synthesis of CS and CC bonds in one pot with abundant molecular oxygen as the sole sacrificial reagent. The method is easy to implement, and 25 new compounds have been prepared in moderate to good yields under mild conditions. This is the first time that a thiocyanate group has been introduced into isoquinoline-1,3(2H,4H)-diones to construct highly functional drug-like molecules.  相似文献   

7.
《中国化学快报》2023,34(1):107565
O-Acyl ketoximes has been proven to be versatile building blocks for practical construction of N-heterocycles. In the last few years, diverse catalytic systems have been discovered to enable efficient transformations of O-acyl ketoximes to a range of nitrogen-heterocycles. Herein, we summarized our recent examples of novel nitrogen-heterocycle formation with new function findings of O-acyl ketoximes through facile aerobic copper catalysis, metal-free NO bond activation, multi-component assembly, and bis-annulations. From the green chemistry perspective, these works represent efficient methods with high atom economy, high selectivity, and minimized chemical waste. These findings also complement well to the previous mainly copper-based catalytic systems and more importantly enrich the oxime chemistry in organic synthesis.  相似文献   

8.
Hydroxyalkylation of N-heteroaromatics with aldehydes was achieved using a binary hybrid catalyst system comprising an acridinium photoredox catalyst and a thiophosphoric acid organocatalyst. The reaction proceeded through the following sequence: (1) photoredox-catalyzed single-electron oxidation of a thiophosphoric acid catalyst to generate a thiyl radical, (2) cleavage of the formyl C–H bond of the aldehyde substrates by a thiyl radical acting as a hydrogen atom transfer catalyst to generate acyl radicals, (3) Minisci-type addition of the resulting acyl radicals to N-heteroaromatics, and (4) a spin-center shift, photoredox-catalyzed single-electron reduction, and protonation to produce secondary alcohol products. This metal-free hybrid catalysis proceeded under mild conditions for a wide range of substrates, including isoquinolines, quinolines, and pyridines as N-heteroaromatics, as well as both aromatic and aliphatic aldehydes, and tolerated various functional groups. The reaction was applicable to late-stage derivatization of drugs and their leads.

Hydroxyalkylation of N-heteroaromatics with aldehydes was achieved using a binary hybrid catalyst system comprising an acridinium photoredox catalyst and a thiophosphoric acid organocatalyst.  相似文献   

9.
10.
Carbon monoxide (CO) has shown broad biomedical applications. The site-specific delivery and controlled release of CO is of crucial importance to achieve maximum therapeutic benefits. The development of carbon monoxide (CO)-releasing polymers (CORPs) can increase the stability, optimize pharmacokinetic behavior, and reduce the side effects of small molecule precursors. However, almost all established CORPs were synthesized through a post functional approach, although the direct polymerization strategy is more powerful in controlling the chain compositions and architectures. Herein, a direct polymerization strategy is proposed toward metal-free CO-releasing polymers (CORPs) based on photoresponsive 3-hydroxyflavone (3-HF) derivatives. Such CO-releasing amphiphiles self-assemble into micelles, having excellent water-dispersity. Intriguingly, photo-triggered tandem photochemical reactions confer successive fluorescence transitions from blue-to-red-to-colorless, enabling self-reporting CO release in vitro and in vivo as a result of the incorporation of 3-HF derivatives. More importantly, the localized CO delivery of CORPs by taking advantage of the spatiotemporal control of light stimulus outperformed conventional metal carbonyls such as CORMs in terms of anti-inflammation and cutaneous wound healing. This work opens a novel avenue toward metal-free CORPs for potential biomedical applications.

Metal-free carbon monoxide-releasing polymers (CORPs) are synthesized via a direct polymerization approach, exhibiting not only improved stability but also accelerated wound healing performance as compared to CORM-3.  相似文献   

11.
A metal-free C–H [5 + 1] annulation reaction of 2-arylanilines with diazo compounds has been achieved, giving rise to two types of prevalent phenanthridines via highly selective C–C cleavage. Compared to the simple N–H insertion manipulation of diazo, this method elegantly accomplishes a tandem N–H insertion/SEAr/C–C cleavage/aromatization reaction, and the synthetic utility of this new transformation is exemplified by the succinct syntheses of trisphaeridine and bicolorine alkaloids.

A metal-free C–H [5 + 1] annulation reaction of 2-arylanilines with diazo compounds has been achieved, giving rise to two types of prevalent phenanthridines via highly selective C–C cleavage.  相似文献   

12.
Flat corannulene has been considered so far only as a transition state of the bowl-to-bowl inversion process. This study was driven by the prediction that substituents with strong steric repulsion could destabilize the bowl-shaped conformation of this molecule to such an extent that the highly unstable planar geometry would become an isolable molecule. To examine the substituents'' effect on the corannulene bowl depth, optimized structures for the highly-congested decakis(t-butylsulfido)corannulene were calculated. The computations, performed with both the M06-2X/def2-TZVP and the B3LYP/def2-TZVP methods (the latter with and without Grimme''s D3 dispersion correction), predict that this molecule can achieve two minimum structures: a flat carbon framework and a bowl-shaped structure, which are very close in energy. This rather unusual compound was easily synthesized from decachlorocorannulene under mild reaction conditions, and X-ray crystallographic studies gave similar results to the theoretical predictions. This compound crystallized in two different polymorphs, one exhibiting a completely flat corannulene core and the other having a bowl-shaped conformation.

The first flat metal-free corannulene derivative was predicted by computations and achieved by synthesis.  相似文献   

13.
Metal-free N- and O-arylation reactions of pyridin-2-ones as ambident nucleophiles have been achieved with diaryliodonium salts on the basis of base-dependent chemoselectivity. In the presence of N,N-diethylaniline in fluorobenzene, pyridin-2-ones were very selectively converted to N-arylated products in high yields. On the other hand, the O-arylation reactions smoothly proceeded with the use of quinoline in chlorobenzene, leading to high yields and selectivities. In these methods, a variety of pyridin-2-ones in addition to pyridin-4-one and a set of diaryliodonium salts were accepted as suitable reaction partners.

The metal-free N- and O-arylation reactions of pyridin-2-ones with diaryliodonium salts were achieved on the basis of base-dependent chemoselectivity.  相似文献   

14.
Direct metal-free near infra-red photoredox catalysis is applied to organic oxidation, photosensitization and reduction, involving cyanines as photocatalysts. This photocatalyst is competitive with conventional reactions catalyzed under visible light. Kinetic and quenching experiments are also reported. Interestingly, these systems are compatible with water media, opening perspective for various applications.

Direct metal-free near infra-red photoredox catalysis is applied to oxidation, reduction and photosensitization, involving cyanines as photocatalysts. Mechanistic insights through kinetic and quenching experiments are also reported.  相似文献   

15.
Over exploitation of natural resources and human activities are relentlessly fueling the emission of CO2 in the atmosphere. Accordingly, continuous efforts are required to find solutions to address the issue of excessive CO2 emission and its potential effects on climate change. It is imperative that the world looks towards a portfolio of carbon mitigation solutions, rather than a single strategy. In this regard, the use of CO2 as a C1 source is an attractive strategy as CO2 has the potential to be a great asset for the industrial sector and consumers across the globe. In particular, the reduction of CO2 offers an alternative to fossil fuels for various organic industrial feedstocks and fuels. Consequently, efficient and scalable approaches for the reduction of CO2 to products such as methane and methanol can generate value from its emissions. Accordingly, in recent years, metal-free catalysis has emerged as a sustainable approach because of the mild reaction conditions by which CO2 can be reduced to various value-added products. The metal-free catalytic reduction of CO2 offers the development of chemical processes with low cost, earth-abundant, non-toxic reagents, and low carbon-footprint. Thus, this perspective aims to present the developments in both the reduction and reductive functionalization chemistry of CO2 during the last decade using various metal-free catalysts.

This review article documents the key developments in the metal-free catalytic reduction of CO2 into various energy intensive chemicals and fuels, and reductive functionalization of CO2 for the formation of new C–N bonds.  相似文献   

16.
A variety of nitrogen-doped porous nanomaterials (e.g. carbons, polymers) act as high efficient metal-free catalysts in H2S selective oxidation to elemental sulfur.
  相似文献   

17.
《中国化学快报》2022,33(9):4269-4272
The metal-free SS bond exchange reaction of symmetrical disulfides catalyzed by NFSI is described. This novel protocol provides a facile and efficient approach to accessing important unsymmetrical disulfides. Furthermore, this strategy could also be utilized in the late-stage functionalization of amino acids, drugs, and natural products. The broad substrate scope, good functional group tolerance and easy accessibility of catalyst indicate that this strategy affords a green and practical complementary method to various unsymmetrical disulfides.  相似文献   

18.
Photochemistry provides a sustainable pathway for organic transformations by inducing radical intermediates from substrates through electron transfer process. However, progress is limited by heterogeneous photocatalysts that are required to be efficient, stable, and inexpensive for long-term operation with easy recyclability and product separation. Here, we report that boron carbonitride (BCN) ceramics are such a system and can reduce organic halides, including (het)aryl and alkyl halides, with visible light irradiation. Cross-coupling of halides to afford new C–H, C–C, and C–S bonds can proceed at ambient reaction conditions. Hydrogen, (het)aryl, and sulfonyl groups were introduced into the arenes and heteroarenes at the designed positions by means of mesolytic C–X (carbon–halogen) bond cleavage in the absence of any metal-based catalysts or ligands. BCN can be used not only for half reactions, like reduction reactions with a sacrificial agent, but also redox reactions through oxidative and reductive interfacial electron transfer. The BCN photocatalyst shows tolerance to different substituents and conserved activity after five recycles. The apparent metal-free system opens new opportunities for a wide range of organic catalysts using light energy and sustainable materials, which are metal-free, inexpensive and stable.

A metal-free photoredox system was introduced for the transformation of organic halides to afford C–H, C–C, and C–S bonds without the addition of any metals, ligands, extra reductants or additives.  相似文献   

19.
Based on hybrid density functional theory (DFT) calculations, we propose a new two-dimensional (2D) B-C-N material, graphitic- (g- ), with the promising prospect of metal-free photocatalysis. We find it to be a near ultraviolet (UV) absorbing direct band gap (3.69 eV) semiconductor with robust dynamical and mechanical stability. Estimating the band positions with respect to water oxidation and hydrogen reduction potential levels along with a detailed analysis of reaction mechanism of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), we observe that g- monolayer can be efficiently used for hydrogen fuel generation over entire pH range as well as for spontaneous water splitting at basic pH range. Upon biaxial strain application, band positions get realigned along with the free energy change that is involved in HER and OER. Consequently, operational range of pH for OER gets broadened and the proposed material exhibits the ability to perform spontaneous and simultaneous oxidation and reduction even in neutral pH. The combination of pH variation and applied strain can be used as a key to control the reducing and/or oxidizing abilities precisely for diverse photocatalytic reactions to attain environmental sustainability.  相似文献   

20.
We report a metal-free novel route for the accelerated synthesis of benzimidazole and its derivatives in the ambient atmosphere. The synthetic procedure involves 1,2-aromatic diamines and alkyl or aryl carboxylic acids reacting in electrostatically charged microdroplets generated using a nano-electrospray (nESI) ion source. The reactions are accelerated by orders of magnitude in comparison to the bulk. No other acid, base or catalyst is used. Online analysis of the microdroplet accelerated reaction products is performed by mass spectrometry. We provide evidence for an acid catalyzed reaction mechanism based on identification of the intermediate arylamides. Their dehydration to give benzimidazoles occurs in a subsequent thermally enhanced step. It is suggested that the extraordinary acidity at the droplet surface allows the carboxylic acid to function as a C-centered electrophile. Comparisons of this methodology with data from thin film and bulk synthesis lead to the proposal of three key steps in the reaction: (i) formation of an unusual reagent (protonated carboxylic acid) because of the extraordinary conditions at the droplet interface, (ii) accelerated bimolecular reaction because of limited solvation at the interface and (iii) thermally assisted elimination of water. Eleven examples are shown as evidence of the scope of this chemistry. The accelerated synthesis has been scaled-up to establish the substituent-dependence and to isolate products for NMR characterization.

We report a metal-free novel route for the accelerated synthesis of benzimidazole and its derivatives in the ambient atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号