首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper describes an improved version of the elliptic averaging method that provides a highly accurate periodic solution of a non-linear system based on the single-degree-of-freedom Duffing oscillator with a snap-through spring. In the proposed method, the sum of the Jacobian elliptic delta and zeta functions is used as the generating solution of the averaging method. The proposed method can be used to obtain the non-odd-order solution, which includes both even- and odd-order harmonic components. The stability analysis for the approximate solution obtained by the present method is also discussed. The stability of the solution is determined from the characteristic multiplier based on Floquet’s theorem. The proposed method is applied to a fundamental oscillator in a non-linear system. The numerical results demonstrate that the proposed method is very effective for analyzing the periodic solution of half-swing mode for systems based on Duffing oscillators with a snap-through spring.  相似文献   

2.
In this paper free oscillators with a power-form restoring force and with a fractional derivative damping term are considered. An analytical approach based on the averaging method is adjusted to derive analytical expressions for the amplitude and phase of oscillations. Effects of the fractional-order derivative on the amplitude and frequency of oscillations are discussed in several examples, including a generalized van der Pol oscillator, purely nonlinear oscillators and a linear oscillator.  相似文献   

3.
While Krylov and Bogolyubov used harmonic functions in their averaging method for the approximate solution of weakly non-linear differential equations with oscillatory solution, we apply a similar averaging technique using Jacobi elliptic functions. These functions are also periodic and are exact solutions of strongly non-linear differential equations. The method is used to solve non-linear differential equations with linear and non-linear small dissipative terms and/or with time dependent parameters. It is also shown that quite general dissipative terms can be transformed into time-dependent parameters. As a special example, the Langevin (collisional) equation of motion of electrons in a neutralizing ion background under the influence of a time and space-dependent electric field is presented. The method may also be used for non-linear control theory, dynamic and parametric stabilization of non-linear oscillations in plasma physics, etc.  相似文献   

4.
A damped complex non-linear system corresponding to two coupled non-linear oscillators with a periodic damping force is investigated by an asymptotic perturbation method based on Fourier expansion and time rescaling. Four coupled equations for the amplitude and the phase of solutions are derived. Phase-locked solutions with period equal to the damping force period are possible only if the oscillators amplitudes are equal. On the contrary, if the oscillators amplitudes are different, periodic solutions exist only with a period different from the damping force period. These solutions are stable only for perturbations that conserve the phase difference and the square amplitude sum of the oscillators. Energy considerations are used in order to study existence and characteristics of quasiperiodic motion. We demonstrate that modulated motion can be also obtained for appropriate values of the detuning parameter and in this case an approximate analytic solution is easily constructed. If the detuning parameter decreases the modulation period increases and then diverges, an infinite-period bifurcation occurs and the resulting motion becomes unbounded. Analytic approximate solutions are checked by numerical integration.  相似文献   

5.
In this paper, an analytical approximation of damped oscillations of some strongly non-linear, planar Hamiltonian systems is considered. To apply the Krylov–Bogoliubov–Mitropolsky method in this strongly non-linear case, we mainly provide the formal and exact solutions of the homogeneous part of the variational equations with periodic coefficients resulting from the Hamiltonian systems. It is shown that these are simply expressed in terms of the partial derivatives of the solutions, written in action-angle variables, of the Hamiltonian systems. Two examples, including a non-linear harmonic oscillator and the Morse oscillator, are presented to illustrate this extension of the method. The approximate first order solution obtained in each case is observed to be quite satisfactory.  相似文献   

6.
Chatterjee  A. 《Nonlinear dynamics》2003,32(4):323-343
Averaging is a classical asymptotic technique commonly used to studyweakly nonlinear oscillations via small perturbations of the harmonicoscillator. If the unperturbed oscillator is autonomous and stronglynonlinear, but with a two-parameter family of periodic solutions, thenaveraging is allowed in principle but typically not considered feasibleunless (a) the required family of unperturbed periodic solutions can befound in closed form, and (b) the averaging integrals can be found inclosed form. Often, the foregoing requirements cannot be met. Here, itis shown how both these difficulties can be bypassed using the classicalbut heuristic approximation method of harmonic balance, to obtain approximate realizations of the asymptotic analytical technique. Theadvantages of the present approach are that (a) closed form solutions tothe unperturbed problem are not needed, and (b) the heuristic andasymptotic parts of the calculation are kept conceptually distinct, withscope for refining the former, while preserving the asymptotic nature ofthe latter. Several examples are provided, including oscillators with astrong cubic nonlinearity, velocity dependent nonlinear terms (includinga strongly nonconservative system), a nondifferentiable characteristic,and a strongly nonlinear but homogeneous function of order 1; dynamicphenomena investigated include damped oscillations, limit cycles, forcedoscillations near resonance, and subharmonic entrainment. Goodapproximations are obtained in each case.  相似文献   

7.
An analytical method is proposed to study the response of a viscoelastic system with strongly non-linear stiffness force and under broad-band random excitations. The random excitations can be additive, or multiplicative, or both, and they can be stationary or non-stationary with evolutionary spectra. With the proposed method, contributions of the viscoelastic force to both damping and stiffness are taken into account separately, and then the extended version of the stochastic averaging, called the quasi-conservative averaging, is applied to the system to derive the averaged equation of energy envelope. Probability density functions of system responses, such as the total energy, the amplitude, and the state variables, can then be obtained analytically. The accuracy of the method is substantiated by comparing the analytical results with those from Monte Carlo simulations. Effects of parameters in the viscoelastic force and in the non-linear stiffness force on the system responses are also investigated.  相似文献   

8.
In this paper, a new technique is introduced by combining Homotopy perturbation method and modified Lindstedt-Poincaré technique to obtain the periodic solutions of certain non-smooth oscillators. In this technique, homotopy perturbation method is re-written in iterative form to linearize perturbation process by homotopy, and then, the modified Lindstedt-Poincaré method is utilized to obtain next approximation for each iteration step. We realize that this new technique works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been confirmed and discussed. Only one or two iterations lead to high accuracy of the solutions. The result obtained and comparison with analytical solution and different methods provide confirmation for the validity of the technique.  相似文献   

9.
A non-linear parametrically excited oscillator, that includes van der Pol as well as Duffing type non-linearities, is studied for its small non-linear motions using the method of averaging. The averaged equations, which form a dynamical system on the plane and depend on the linear damping and the detuning, are analyzed for their constant and periodic solutions. Bendixon's criterion is used to deduce the existence and the non-existence of limit cycle solutions for various values of the parameters. Then, using local bifurcation theory for “saddle-node”, pitchfork and “Hopf” bifurcations and some results from one and two parameter unfoldings of degenerate singularities, a partial bifurcation set is constructed. Since constant and periodic solutions of the averaged system correspond, respectively, to the periodic solutions and almost periodic or amplitude modulated motions of the original oscillator, the bifurcation set indicates some ways in which periodic solutions can become “entrained” or can break the entrainment for almost periodic oscillations.  相似文献   

10.
A Modified Perturbation Technique Depending Upon an Artificial Parameter   总被引:1,自引:1,他引:0  
He  Ji-Huan 《Meccanica》2000,35(4):299-311
In this paper, a modified perturbation method is proposed to search for analytical solutions of nonlinear oscillators without possible small parameters. An artificial perturbation equation is carefully constructed by embedding an artificial parameter, which is used as expanding parameter. It reveals that various traditional perturbation techniques can be powerfully applied in this theory. Some examples, such as the Duffing equation and the van der Pol equation, are given here to illustrate its effectiveness and convenience. The results show that the obtained approximate solutions are uniformly valid on the whole solution domain, and they are suitable not only for weak nonlinear systems, but also for strongly nonlinear systems. In applying the new method, some special techniques have been emphasized for different problems.  相似文献   

11.
A new approach is presented for solving nonlinear oscillatory systems. Parker-Sochacki method (PSM) is combined with Laplace-Padé resummation method to obtain approximate periodic solutions for three nonlinear oscillators. The first one is Duffing oscillator with quintic nonlinearity which has odd nonlinearity. The second one is Helmholtz oscillator which has even nonlinearity. The last one is a strongly nonlinear oscillator, namely; relativistic harmonic oscillator which has a fractional order nonlinearity. Solutions are also obtained using Runge-Kutta numerical method (RKM) and Lindstedt-Poincare method (LPM). However, the LPM could not be used to solve the relativistic harmonic oscillator since it is a strongly nonlinear oscillator. The comparison between these solutions shows that the convergence zone for the Parker-Sochacki with Laplace-Padé method (PSLPM) is remarkably increased compared to PSM method. It also shows that the PSLPM solutions are in excellent agreement with LPM solutions for Duffing oscillator and are superior to LPM solutions in case of Helmholtz oscillator. The PSLPM succeeded to give an accurate periodic solution for the relativistic harmonic oscillator. For a wide range of solution domain, comparing PSLPM with RKM prove the correctness of the PSLPM method. Hence, the PSLPM method can be used with satisfied confidence to solve a broad class of nonlinear oscillators.  相似文献   

12.
Ivana Kovacic 《Meccanica》2013,48(10):2415-2425
Harmonically excited generalized van der Pol oscillators with power-form non-linearities in the restoring and damping-like force are investigated from the viewpoint of the occurrence of harmonic entrainment. Locked periodic motion is obtained by adjusting the averaging method. The influence of the powers of the restoring and damping-like force on the occurrence of this phenomenon is examined.  相似文献   

13.
A generalized hyperbolic perturbation method is presented for homoclinic solutions of strongly nonlinear autonomous oscillators,in which the perturbation procedure is improved for those systems whose exact homoclinic generating solutions cannot be explicitly derived.The generalized hyperbolic functions are employed as the basis functions in the present procedure to extend the validity of the hyperbolic perturbation method.Several strongly nonlinear oscillators with quadratic,cubic,and quartic nonlinearity are studied in detail to illustrate the efficiency and accuracy of the present method.  相似文献   

14.
15.
Dynamics of two delay coupled van der Pol oscillators   总被引:1,自引:0,他引:1  
In this paper, the dynamics of a system of two van der Pol oscillators with delayed position and velocity coupling is studied by the method of averaging together with truncation of Taylor expansions. According to the slow-flow equations, the dynamics of 1:1 internal resonance is more complex than that of non-1:1 internal resonance. For 1:1 internal resonance, the stability and the number of periodic solutions vary with different time delay for given coupling coefficients. The condition necessary for saddle-node and Hopf bifurcations for symmetric modes, namely in-phase and out-of-phase modes, are determined. The numerical results, obtained from direct integration of the original equation, are found to be in good agreement with analytical predictions.  相似文献   

16.
This paper is concerned with a new improved formulation of the theoretical model previously developed by Benamar et al. based on Hamilton's principle and spectral analysis, for the geometrically non-linear vibrations of thin structures. The problem is reduced to a non-linear algebraic system, the solution of which leads to determination of the amplitude-dependent fundamental non-linear mode shapes, the frequency parameters, and the non-linear stress distributions. The cases of C-S-C-S and C-S-S-S rectangular plates are examined, and the results obtained are in a good qualitative and quantitative agreement with the previous available works, based on various methods. In order to obtain explicit analytical solutions for the first non-linear mode shapes of C-S-C-S RP2 and C-S-S-S RP, which are expected to be very useful in engineering applications and in further analytical developments, the improved version of the semi-analytical model developed by El Kadiri et al. For beams and fully clamped rectangular plates, has been slightly modified, and adapted to the above cases, leading to explicit expressions for the higher basic function contributions, which are shown to be in a good agreement with the iterative solutions, for maximum non-dimensional vibration amplitude values up to 0.75 and 0.6 for the first non-linear mode shapes of C-S-C-S RP and C-S-S-S RP, respectively.  相似文献   

17.
An analytical approximate method for strongly nonlinear damped oscillators is proposed. By introducing phase and amplitude of oscillation as well as a bookkeeping parameter, we rewrite the governing equation into a partial differential equation with solution being a periodic function of the phase. Based on combination of the Newton’s method with the harmonic balance method, the partial differential equation is transformed into a set of linear ordinary differential equations in terms of harmonic coefficients, which can further be converted into systems of linear algebraic equations by using the bookkeeping parameter expansion. Only a few iterations can provide very accurate approximate analytical solutions even if the nonlinearity and damping are significant. The method can be applied to general oscillators with odd nonlinearities as well as even ones even without linear restoring force. Three examples are presented to illustrate the usefulness and effectiveness of the proposed method.  相似文献   

18.
A new stochastic averaging procedure for single-degree-of-freedom strongly non-linear oscillators with lightly linear and (or) non-linear dampings subject to weakly external and (or) parametric excitations of wide-band random processes is developed by using the so-called generalized harmonic functions. The procedure is applied to predict the response of Duffing–van der Pol oscillator under both external and parametric excitations of wide-band stationary random processes. The analytical stationary probability density is verified by digital simulation and the factors affecting the accuracy of the procedure are analyzed. The proposed procedure is also applied to study the asymptotic stability in probability and stochastic Hopf bifurcation of Duffing–van der Pol oscillator under parametric excitations of wide-band stationary random processes in both stiffness and damping terms. The stability conditions and bifurcation parameter are simply determined by examining the asymptotic behaviors of averaged square-root of total energy and averaged total energy, respectively, at its boundaries. It is shown that the stability analysis using linearized equation is correct only if the linear stiffness term does not vanish.  相似文献   

19.
The stochastic averaging method for strongly non-linear oscillators with lightly fractional derivative damping of order α (0<α≤1) subject to bounded noise excitations is proposed by using the generalized harmonic function. The system state is approximated by a two-dimensional time-homogeneous diffusion Markov process of amplitude and phase difference using the proposed stochastic averaging method. The approximate stationary probability density of response is obtained by solving the reduced Fokker–Planck–Kolmogorov (FPK) equation using the finite difference method and successive over relaxation method. A Duffing oscillator is taken as an example to show the application and validity of the method. In the case of primary resonance, the stochastic jump of the Duffing oscillator with fractional derivative damping and its P-bifurcation as the system parameters change are examined for the first time using the stationary probability density of amplitude.  相似文献   

20.
We present a perturbation method for the analysis of single degree of freedom non-linear oscillation phenomena governed by an equation of motion containing a parameter ? which need not be small. The approach is to define a new parameter α = α(?) in such a way that asymptotic solutions in power series in α converge more quickly than do the standard perturbation expansions in power series in ?. Phenomena considered are free vibration of strongly non-linear conservative oscillators and steady state response of strongly non-linear oscillators subject to weak harmonic excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号