首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚酰亚胺泡沫材料的制备与性能表征   总被引:1,自引:0,他引:1  
采用3,3′,4,4′-二苯甲酮四甲酸二酐(酮酐,BTDA)和4,4′-二氨基二苯甲烷(MDA)为主要原料制备了一种聚酰亚胺泡沫材料.采用傅里叶变换红外光谱(FTIR)、核磁共振氢谱(1H-NMR)、扫描电镜(SEM)、导热系数测定仪、热失重分析(TGA)、差式扫描量热分析(DSC)及驻波管分别对前聚体粉末化学结构、泡沫泡孔结构、热性能及声学性能进行了表征.研究结果表明前聚体粉末以聚酰胺酯和铵盐两种形式存在,所得泡沫泡孔均匀,并且随前聚体干燥温度升高,泡孔尺寸变小.泡沫的导热系数λ为7.62×10-3W/(m.K),失重5wt%的分解温度Td5为540℃,玻璃化转变温度Tg为306℃,表明其具有优良的隔热耐热性.并且由声学测试可知在0~2000Hz频率范围内,吸声系数可达0.79,传声损失可达19.4dB,具有低频吸声、隔声性.  相似文献   

2.
以PVC,TPU为主要原料,加入发泡剂AC,交联剂DCP,空心玻璃微珠及其他助剂经模压成型制备了PVC/TPU轻质材料.通过密度以及机械性能测试研究了TPU用量、DCP用量和空心玻璃微珠含量对PVC/TPU轻质材料性能的影响,用红外光谱研究材料基团的变化,通过凝胶含量测试交联体系凝胶量,用SEM扫描电镜表征了材料的泡孔形状、尺寸以及排列.聚酯型TPU能够提高轻质材料弯曲和冲击强度,TPU加入10份时,共混体系的表观密度最低,为0.30 g/cm3.表观密度随着交联剂DCP的添加先降低后增大,红外表征和凝胶含量测试证实轻质材料体系产生了交联结构.空心玻璃微珠的加入,使得PVC/TPU轻质材料的表观密度和综合机械性能提高明显,即使加入20份空心玻璃微珠密度始终小于1.0 g/cm3.SEM表明,DCP的加入使得泡孔更完整且不易破孔,泡孔壁更厚;空心玻璃微珠分布在泡孔壁上,起到引发泡孔和支撑负荷的作用.  相似文献   

3.
通过向聚氨酯发泡体系中添加空心玻璃微珠,制备出空心玻璃微珠聚氨酯三相泡沫.研究了空心玻璃微珠添加量、聚磷酸铵(APP)用量、膨胀阻燃体系(IFR)浓度等因素对聚氨酯泡沫燃烧和力学性能的影响.结果表明,单独添加空心玻璃微珠对聚氨酯泡沫的氧指数和水平燃烧速度影响不大.添加APP或IFR后,空心玻璃微珠聚氨酯三相泡沫的阻燃效...  相似文献   

4.
采用高温化学发泡法制备了一种间乙炔基苯偶氮酚醛树脂泡沫(EPANF).采用傅里叶红外光谱(FTIR)、凝胶渗透色谱(GPC)、光学显微镜、扫描电子显微镜(SEM)、导热系数分析仪、临界氧指数分析仪和热重分析(TG)等表征了间乙炔基苯偶氮酚醛树脂(EPAN)结构和EPANF的泡孔结构、压缩强度、隔热性能、阻燃性能和热性能.研究结果表明,当所用发泡剂含量为18%,泡沫体的表观密度为0.179 g/cm~3时,EPANF泡孔均匀微细,闭孔率高,泡孔平均粒径为350μm左右.随着表观密度增加,泡沫体压缩强度增大,热导率系数增大,隔热性能略有下降,但其临界氧指数变大,阻燃性能提高.当表观密度为0.363 g/cm~3时,EPANF的压缩强度达到最大为5.63 MPa.EPANF的5%和10%热失重温度分别为333、381℃,其700℃的残炭率和1000℃的残炭率分别为65.8%和58.2%,耐热性和耐烧蚀性较普通线性酚醛树脂有明显提高.EPANF作为热结构材料和烧蚀材料有望在航天航空等领域应用.  相似文献   

5.
耐高温聚酰亚胺泡沫材料   总被引:1,自引:0,他引:1  
聚酰亚胺泡沫具有低介电、隔热、吸声、高比强度以及高经济效益等诸多优点,因而近些年来在航空、航天、船舶航舰、能源与环境保护等领域有着广泛的应用。聚酰亚胺泡沫按照泡孔结构分为软质开孔泡沫和硬质闭孔泡沫两大类,其通常是由芳香族二酐与芳香族二胺通过缩聚反应制备得到分子量可控的聚酯铵盐,再将其作为前驱体经过热发泡制备得到最终的聚酰亚胺泡沫。前驱体的化学结构对最终的聚酰亚胺泡沫的机械性能和热性能都有非常显著的影响,同时前驱体的分子量也会对泡沫的密度、机械性能和热性能有非常显著的影响。聚酰亚胺泡沫的研究进展,特别是其化学结构、性能和应用都会在本文中逐一阐述。  相似文献   

6.
环氧树脂-玻璃微珠多孔复合材料的水声性能   总被引:2,自引:1,他引:1  
为提高薄板吸声材料的吸声性能,用改性环氧树脂和空心玻璃微珠等原料合成了25mm厚环氧树脂-玻璃微珠多孔复合材料,在脉冲声管中测试了合成材料试样的声压反射系数和吸声系数,研究了合成工艺参数对其水下声学性能的影响.测试结果表明:环氧树脂-玻璃微珠多孔复合材料是一种良好的水下吸声材料,其吸声性能受到空心玻璃微珠的种类及其含量和固化剂种类等参数的影响.制备了填充多种空心玻璃微珠低频吸声性能良好的环氧树脂-玻璃微珠声学材料.合理地设计实验工艺参数,可以得到水下声学性能更佳的环氧树脂-玻璃微珠多孔复合材料.  相似文献   

7.
一种新型聚酰亚胺离子型共聚物的合成与表征   总被引:1,自引:0,他引:1  
以过氧化氢为氧化剂,在三氟乙酸中对2,6-二氯吡啶进行氧化,制备了2,6-二氯吡啶氮氧化物,该单体与4,4′-二巯基二苯砜、3,3′-二甲基-双(4-氯代酰亚胺)-4,4′-二苯甲烷(4-BCPI)通过亲核取代反应生成了含有离子基团的聚酰亚胺。采用红外分析(FT-IR)、黏度测试、溶解度实验、热失重分析(TGA)和示差扫描量热分析(DSC)等测试方法,对所合成的聚酰亚胺的结构与性能进行了表征。测试结果表明:该类聚酰亚胺在室温下不仅可溶于常用的极性非质子有机溶剂,也能溶于氯仿、吡啶等溶剂。此外,10%热失重温度高于430℃,玻璃化转变温度高于210℃。  相似文献   

8.
以聚醚多元醇(N220、N330)、聚酯多元醇(PNA)和液化二苯基甲烷二异氰酸酯(MDI)为主要原料,采用一步法制备软质聚氨酯泡沫。通过红外光谱、拉伸和回弹实验、热重分析及光学显微镜观察拍摄对泡沫产品的结构、拉伸性能、回弹性、热稳定性及泡孔结构进行了分析,并研究了PNA的加入量及不同催化剂比例对产品性能和泡孔结构的影响。结果表明:PNA的加入量为15%时,泡沫产品的各项性能最佳;当双(二甲胺基乙基)醚(A-1)∶三乙醇胺(TEOA)∶辛酸亚锡(T-9)=0.1∶0.6∶0.2时,泡孔结构均匀、力学性能良好。  相似文献   

9.
采用有限元法计算了双分布聚合物泡沫的泡孔分布对材料热性能的影响。研究了不同孔隙率下材料热通量的变化,得到了泡孔分布形式、孔隙率与导热系数之间的关系。结果表明,孔隙率在30%~70%之间时,双分布泡孔结构材料的保温性优于单分布泡孔结构材料。其次,随着孔隙率与大孔径泡孔面积占比的增加,材料保温性能增强。最后,相同孔隙率的情况下,三分布泡孔结构材料中,随着大孔面积占比的增加,材料的保温性能增强。  相似文献   

10.
通过快速卸压法, 以超临界CO2为物理发泡剂, 研究了相容的聚甲基丙烯酸甲酯(PMMA)/1-n-十二烷基-3-甲基咪唑六氟磷酸盐([C12 MIM][PF6])离子液体(IL)复合体系的发泡性能. 加入IL后, PMMA对CO2的吸收量增加; 复合体系的玻璃化转变温度(Tg)随IL含量的增加而降低. IL对PMMA发泡行为的影响取决于发泡条件. 在较低温度和压力下, 纯PMMA无法发泡, IL的加入可促进泡孔形成; 提高温度和压力, 纯PMMA可以发泡, IL的加入在提高泡孔尺寸的同时使泡孔仍然保持尺寸分布均匀的微米级结构.  相似文献   

11.
新型乙炔封端聚酰亚胺的制备及性能   总被引:2,自引:0,他引:2  
用双酚A型二醚二酐(BPADA)和3-乙炔基苯胺(m-APA)进行缩聚反应合成了乙炔基封端的聚酰亚胺预聚体, 并对预聚体的熔体黏度、稳定性和热性能等进行研究. 结果表明, 此类预聚体具有较宽的加工窗口和较低的加工温度, 适合模压成型工艺制备树脂基复合材料. 预聚体经250 ℃固化后显示了优异的热性能, 动态力学分析显示其玻璃化转变温度为363 ℃, 在氮气和空气气氛下5%热失重温度分别为490和492 ℃.  相似文献   

12.
以2-苯基-4,4'-二氨基二苯醚(p-ODA)、异构二苯醚二酐(ODPA)和苯乙炔基苯酐(PEPA)为原料,通过两步法合成了聚合度分别为1,2和3的酰亚胺树脂低聚物,并通过模压成型法制备了单向碳纤维增强的聚酰亚胺复合材料.表征了酰亚胺树脂低聚物的溶解性、熔体黏度及其固化物聚酰亚胺树脂的热性能,结果表明,聚酰亚胺树脂具有良好的溶解性,在N,N-二甲基乙酰胺(DMAc)、四氢呋喃(THF)及1,4-二氧六环等溶剂中的溶解度大于30%;所有酰亚胺树脂低聚物的最低熔体黏度均在10 Pa·s以下,具有良好的成型工艺性;聚酰亚胺树脂具有良好的热性能,玻璃化转变温度(Tg)最高可达300℃,5%热失重温度(T5%)最高可达545℃,碳纤维增强聚酰亚胺复合材料PIC-4,4'-ODPA-2具有最佳的高低温力学性能.  相似文献   

13.
空心玻璃微珠改性饰面型防火涂料性能研究   总被引:2,自引:0,他引:2  
利用隧道燃烧法测定了空心微珠改性防火涂料的防火性能,考察了空心微珠类型和添加量对涂料防火性能的影响,结合试件背火面温度变化探讨了空心微珠的防火机理.结果表明空心微珠可显著提高防火涂料的防火性能,添加适当的量可以使涂料的防火性能达到二级标准.  相似文献   

14.
以4,4′-二氨基二苯硫醚(SDA)和均苯四酸酐(PMDA)为原料,通过溶液缩聚法-热酰亚胺/化学酰亚胺化的方法制备了一种含硫醚结构均苯型聚酰亚胺.利用高级旋转流变仪建立了在线跟踪反应进程的方法,采用热失重分析仪研究反应条件对热酰亚胺化及化学酰亚胺化法的影响,这些方法的建立为进一步制备高性能的聚酰亚胺提供有效的实验手段.采用小角激光光散射法、红外光谱、元素分析、接触角仪、DSC等方法对聚合物的结构与性能进行表征.结果显示,硫醚结构的引入,可有效改善聚合物薄膜的表面性能,其与铜箔之间的粘附功明显大于传统聚酰亚胺,在无胶挠性线路板应用方面显示出较好的应用前景.所获聚合物的Mw为(6.7±1.6)×104,分解温度均高于560℃;DSC的结果显示所制备的两种酰亚胺化聚合物均具有较高的玻璃化转变温度,相比之下,化学酰亚胺化更有利于获得高酰亚胺化程度的聚合物,产物的玻璃化转变温度也更高.  相似文献   

15.
通过原位聚合方法制备了以非水溶性聚合物(聚甲基丙烯酸甲酯,PMMA)为基体,与MgFe双氢氧化物(LDH)具有良好相容性的层离型纳米复合材料.采用小角、广角X射线衍射(XRD)及透射电镜(TEM)对纳米复合材料的微观结构进行了分析,通过热重分析(TG)和玻璃化转变研究了纳米复合材料在空气和氮气氛围下的热降解过程.实验结果表明,MgFe-LDH的引入显著提高了聚合物基体的热降解温度和玻璃化转变温度,纳米复合材料的热稳定性显著提高.其中含量1.6 wt%的层离型纳米复合材料在失重50%时的热降解温度比纯样提高约69℃.并且整个纳米复合体系的相容性良好,含量8.0 wt%的样品,其可见光透过率仍可达90%以上.  相似文献   

16.
以4,4'-对苯二甲酰二邻苯二甲酸酐(TDPA)为芳二酐单体,对苯二胺(PPD)为芳二胺单体,经低温溶液缩聚制得成膜性能优良的高相对分子质量聚酰胺酸(PAA),再经过热亚胺化制备双酮酐型聚酰亚胺(PI)薄膜。 采用傅里叶变换红外光谱仪(FT-IR)、广角X射线衍射(WAXD)、差示扫描量热仪(DSC)、动态热机械分析仪(DMA)、热重分析仪(TGA)、紫外-可见分光光度计(UV-Vis)及力学性能等技术手段表征了聚酰亚胺膜的结构和性能,考察了不同亚胺化温度对合成的双酮酐型聚酰亚胺膜性能的影响。 结果表明,经程序升温至320 ℃能使PAA热亚胺化基本趋于完成。 PI薄膜为部分有序聚集态结构,玻璃化转变温度(Tg)为298 ℃,具有优异的热性能,热失重温度(T5%)为523 ℃。 拉伸强度达到130 MPa,弹性模量为5.77 GPa。 PI薄膜紫外光透过截止波长为375 nm,在可见光区具有良好的透光性能及耐溶剂性能。  相似文献   

17.
聚酰亚胺(PI)薄膜作为柔性有机发光显示(OLED)基板材料应用时, 需要满足玻璃化转变温度(Tg)大于450 ℃和热膨胀系数(CTE)在0~5×10-6 K-1之间. 为了提高PI薄膜的热性能, 本文合成了2,7-占吨酮二胺 (2,7-DAX), 并将其与均苯四甲酸二酐(PMDA)和2-(4-氨基苯基)-5-氨基苯并噁唑(BOA)共聚制备了一系列新型PI薄膜. 研究了PI薄膜的聚集态结构、 耐热性能、 尺寸稳定性和力学性能. 结果表明, 占吨酮结构和苯并噁唑结构提高了PI分子链的刚性与线性, 使分子链在平面内紧密堆积与取向, 制备的PI薄膜综合性能优异, 玻璃化转变温度高于408 ℃, CTE在-5.0×10-6~8.1×10-6 K-1之间, 拉伸强度大于140 MPa, 拉伸模量大于4.2 GPa, 断裂伸长率为7.1%~20%, 5%热失重分解温度(T5%)在601~624 ℃之间. 其中, PI-50和PI-60薄膜具有超高玻璃化转变温度和超低热膨胀系数, Tg高于450 ℃, CTE分别为2.1×10-6 K-1和1.6×10-6 K-1. 制备的系列PI薄膜作为柔性OLED基板材料有潜在应用前景.  相似文献   

18.
一种高可溶、高光学透明含氟聚酰亚胺的合成与表征   总被引:1,自引:0,他引:1  
由自制芳香二胺单体9,9-双(3,5-二氟-4-胺基苯基)芴和商品化二酐单体4,4'-(六氟异丙基)双邻苯二甲酸酐经一步法高温缩聚制备了一种新型含氟聚酰亚胺.分别用FT-IR、1HNMR和19FNMR对所制聚酰亚胺结构进行了表征.结果证实其与所设计的结构完全一致,并且酰亚胺化反应完全.该含氟聚酰亚胺表现出高的溶解性:室温下在N-甲基-2-吡咯烷酮、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、氯仿、二氯甲烷、四氢呋喃等常规溶剂中的溶解度可达10wt%以上.由该聚酰亚胺溶液所制的薄膜无色透明,截断波长在315nm,400nm波长后的透光率在84%以上.此外该含氟聚酰亚胺还表现出良好的热学性能和机械性能:玻璃化转变温度在377℃,空气和氮气中10%热失重温度均在539℃以上;其薄膜的拉伸强度在70~80MPa,断裂伸长率在4%~8%,起始模量为2.6GPa.  相似文献   

19.
以乙烯基三氯硅烷为原料水解制得八乙烯基多面体低聚倍半硅氧烷(OV-POSS),将其与经KH570改性的SiO2溶胶和甲基丙烯酸甲酯(MMA)混合均匀,采用热固化的方法制得PMMA/SiO2/OV-POSS杂化材料,通过透射电镜、红外谱图、差热分析和热重分析对材料的微观结构以及热性能进行表征,结果表明:杂化材料结构均匀,有机相和无机相之间通过双键聚合的方式形成了共价键;杂化材料耐热性好,玻璃化转变温度比纯PMMA提高约72℃,分解温度提高约121℃。  相似文献   

20.
玻璃微珠填充改性聚合物研究进展   总被引:3,自引:0,他引:3  
玻璃微珠作为一种新型的刚性粒子 ,除了对于聚合物的增强增韧作用 ,在许多方面都已引起聚合物改性工作者的关注。本文从玻璃微珠对聚合物的增韧效果 ,玻璃微珠填充聚合物的拉伸性能、动态力学性能、流变形能、界面以及其他性能等方面综述了近年来玻璃微珠填充改性聚合物的研究进展  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号