首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, very easily prepared trypsin-immobilized magnetic microspheres were applied in microwave-assisted protein digestion and firstly applied for proteome analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Magnetic microspheres with small size were synthesized and modified by 3-glycidoxypropyltrimethoxysilane (GLYMO). Trypsin was immobilized onto magnetic microspheres through only a one-step reaction of its amine group with GLYMO. When these easily prepared trypsin-immobilized magnetic microspheres were applied in microwave-assisted protein digestion, the magnetic microspheres not only functionalized as substrate for trypsin immobilization, but also as an excellent microwave absorber and thus improved the efficiency of microwave-assisted digestion greatly. Cytochrome c was used as a model protein to verify its digestion efficiency. Without any additives such as organic solvents or urea, peptide fragments produced in 15 s could be confidently identified by MALDI-TOF-MS and better digestion efficiency was obtained comparing to conventional in-solution digestion (12 h). Besides, with an external magnet, trypsin could be used repeatedly and at the same time no contaminants were introduced into the sample solution. It was verified that the enzyme maintained high activity after seven runs. Furthermore, reversed-phase liquid chromatography (RPLC) fractions of rat liver extract were also successfully processed using this novel method. These results indicated that this fast and efficient digestion method, which combined the advantages of immobilized trypsin and microwave-assisted protein digestion, will greatly hasten the application of top-down proteomic techniques for large-scale analysis in biological and clinical research.  相似文献   

2.
Xu G  Chen X  Hu J  Yang P  Yang D  Wei L 《The Analyst》2012,137(12):2757-2761
With an ultra-high surface area and abundant functional groups, graphene oxide (GO) provides an ideal substrate for the immobilization of trypsin. We demonstrated that trypsin could be immobilized on GO sheets assisted by polymers as molecular spacers to maintain the activity of the enzyme. And with the trypsin-linked GO as the enzyme immobilization probe, a novel microwave-assisted on-plate digestion method has been developed with subsequent analysis by MALDI-MS. The feasibility and performance of the digestion approach were demonstrated by the proteolysis of standard proteins. The results show that this novel approach substantially accelerated proteolysis and reduced the time required for traditional procedures involving on-plate enzymatic digestion and sample preparation prior to MALDI-MS analysis. The novel digestion approach is simple and efficient, offering great promise for high throughput protein identification.  相似文献   

3.
Identification of protein glycosylation sites is analytically challenging due to the diverse glycan structures associated with a glycoprotein. Mass spectrometry (MS)-based identification and characterization of glycoproteins has been achieved predominantly with the bottom-up approach, which typically involves the enzymatic cleavage of proteins to peptides prior to LC/MS or LC/MS/MS analysis. However, the process can be challenging due to the structural variations and steric hindrance imposed by the attached glycans. Alternatives to conventional heating protocols, that increase the rate of enzymatic cleavage of glycoproteins, may aid in addressing these challenges. An enzymatic digestion of a glycoprotein can be accelerated and made more efficient through microwave-assisted digestion. In this paper, a systematic study was conducted to explore the efficiency of microwave-assisted enzymatic (trypsin) digestion (MAED) of glycoproteins as compared with the conventional method. In addition, the optimum experimental parameters for the digestion such as temperature, reaction time, and microwave radiation power were investigated. It was determined that efficient tryptic digestion of glycoproteins was attained in 15 min, allowing comparable if not better sequence coverage through LC/MS/MS analysis. Optimum tryptic cleavage was achieved at 45°C irrespective of the size and complexity of the glycoprotein. Moreover, MAED allowed the detection and identification of more peptides and subsequently higher sequence coverage for all model glycoprotein. MAED also did not appear to prompt a loss or partial cleavage of the glycan moieties attached to the peptide backbones.  相似文献   

4.
《Analytical letters》2012,45(4):707-719
The proteolytic enzyme trypsin was chemically immobilized to an amine-functionalized sol-gel using adipoyl chloride under nonaqueous conditions and a nitrogen atmosphere. In the synthesis of the sol-gel, tetraethyl orthosilicate (TEOS), and 3-(2-aminoethylamino) propyldimethoxymethylsilane (AEAPMS) (50:50, v/v) were used, which provided convenient physical and chemical conditions to maintain catalytic activity of immobilized trypsin molecules for the digestion of proteins in proteomics applications. Bovine serum albumin was used as a model protein to perform enzymatic digestion using the trypsin immobilized sol-gel. The resulting peptides were analyzed by matrix-assisted laser desorption/ionization-mass spectrometry to evaluate the digestion performance and specificity of the sol-gel material. The trypsin immobilized sol-gel showed superior enzymatic activity in protein digestion and it was determined that the sol-gel material could be repeatedly used at least 25 times without significant activity loss in long-term use. Additionally, autocatalysis was prevented by immobilization of trypsin. The peptide digest having the highest purity was obtained for protein identification studies.  相似文献   

5.
A hydrophilic immobilized enzyme reactor (IMER) containing trypsin was prepared and applied in the proteolysis of glycoproteins. Glycoproteins including horseradish peroxidase, asialofetuin, and fetuin were used to evaluate the performance of the hydrophilic IMER for the glycoprotein digestion. The digested products were detected by matrix-assisted laser desorption/ionization quadruple ion trap time-of-flight mass spectrometry and micro-high-performance liquid chromatography. The hydrophilic IMER showed higher enzymatic digestion efficiency compared with conventional in-solution digestion. The digestion time could be reduced from 16 h to several minutes. Furthermore, using microwaves as a heat source, the reproducibility of the hydrophilic IMER was evaluated and this IMER could be recycled for at least ten times without obvious loss of enzyme activity. The hydrophilic IMER provides a promising tool for high-throughput glycoproteome analysis.  相似文献   

6.
A robust ultra high performance liquid chromatography with tandem mass spectrometry method at peptide level was established for measuring α‐lactalbumin in various dairy products. An isotope‐labeled winged peptide (VKKILDKVG*I NYW*L AHKALCSEKL) with extra amino acids of the sequence of signature peptide concatenated at each end as the internal standard was spiked in samples to participate in the whole tryptic digestion process. The peptide VG*I NYW*L AHK that resulted from the isotope‐labeled winged peptide was used as the final isotopically labeled internal standard of the α‐lactalbumin signature peptide (VGINYWLAHK) during the quantitative analysis. The contents of α‐lactalbumin in samples were calculated based on the equimolar relationship between the α‐lactalbumin protein and signature peptide. The optimized molar ratio of trypsin to protein (1:60) and enzymatic digestion time (5 h) could not only improve the digestion efficiency and reduce the cost, but also minimize the period of sample pretreatment. Considering the robustness of the current method using the isotopically labeled internal standard and acceptable measurement cost, its application may promote the development of nutrient investigation and quality control of α‐lactalbumin in dairy products. This protein analysis method might provide a new reference strategy for food analysis and quantitative protein analysis.  相似文献   

7.
Protein phosphorylation is a reversible post-translational modification known to regulate protein function, subcellular localization, complex formation, and protein degradation. Detailed phosphoproteomic information is critical to kinomic studies of signal transduction and for elucidation of cancer biomarkers, such as in non-small-cell lung adenocarcinoma, where phosphorylation is commonly dysregulated. However, the collection and analysis of phosphorylation data remains a difficult problem. The low concentrations of phosphopeptides in complex biological mixtures as well as challenges inherent in their chemical nature have limited phosphoproteomic characterization and some phosphorylation sites are inaccessible by traditional workflows. We developed a sequential digestion method using complementary proteases, Glu-C and trypsin, to increase phosphoproteomic coverage and supplement traditional approaches. The sequential digestion method is more productive than workflows utilizing only Glu-C and we evaluated the orthogonality of the sequential digestion method relative to replicate trypsin-based analyses. Finally, we demonstrate the ability of the sequential digestion method to access new regions of the phosphoproteome by comparison to existing public phosphoproteomic databases. Our approach increases coverage of the human lung cancer phosphoproteome by accessing both new phosphoproteins and novel phosphorylation site information.  相似文献   

8.
Highly efficient and rapid proteolytic digestion of proteins into peptides is a crucial step in shotgun-based proteome-analysis strategy.Tandem digestion by two or more proteases is demonstrated to be helpful for increasing digestion efficiency and decreasing missed cleavages,which results in more peptides that are compatible with mass-spectrometry analysis.Compared to conventional solution digestion,immobilized protease digestion has the obvious advantages of short digestion time,no self-proteolysis,and reusability.We proposed a multiple-immobilized proteases-digestion strategy that combines the advantages of the two digestion strategies mentioned above.Graphene-oxide(GO)-based immobilized trypsin and endoproteinase Glu-C were prepared by covalently attaching them onto the GO surface.The prepared GO-trypsin and GO-Glu-C were successfully applied in standard protein digestion and multiple immobilized proteases digestion of total proteins of Thermoanaerobacter tengcongensis.Compared to 12-hour solution digestion using trypsin or Glu-C,14%and 7%improvement were obtained,respectively,in the sequence coverage of BSA by one-minute digestion using GO-trypsin and GO-Glu-C.Multiple immobilized-proteases digestion of the total proteins of Thermoanaerobacter tengcongensis showed 24.3%and 48.7%enhancement in the numbers of identified proteins than was obtained using GO-trypsin or GO-Glu-C alone.The ultra-fast and highly efficient digestion can be contributed to the high loading capacity of protease on GO,which leads to fewer missed cleavages and more complete digestion.As a result,improved protein identification and sequence coverage can be expected.  相似文献   

9.
A simple and rapid microwave-assisted alkaline digestion procedure was developed in combination with high performance liquid chromatography-ultraviolet post-column oxidation-cold vapour atomic fluorescence spectrometric detection for methylmercury determination in biological tissues. Since the stability of methylmercury in methanolic potassium hydroxide solution under microwave irradiation was verified, the microwave-assisted extraction procedure was optimized in terms of quantitative recovery of methylmercury and minimum time required. The alkaline extracts were subjected to clean-up steps with dichloromethane and hydrochloric acid in order to reduce matrix interferences in methylmercury determination. The effects of matrix interferences were checked by comparison of the slopes corresponding to calibration and standard addition curves. The accuracy of the method was evaluated by the analysis of two biological certified reference materials, NRC TORT-2 and BCR 463. The results obtained by the proposed method were in good agreement with the certified values of methylmercury concentration in both materials. The detection limit was 10 microg kg(-1) and the relative standard deviation was < 8% for methylmercury concentrations ranging from 0.15 to 3.0 mg kg(-1).  相似文献   

10.
Optimization of acid digestion method for mercury determination in marine biological samples (dolphin liver, fish and mussel tissues) using a closed vessel microwave sample preparation is presented. Five digestion procedures with different acid mixtures were investigated: the best results were obtained when the microwave-assisted digestion was based on sample dissolution with HNO3-H2SO4-K2Cr2O7 mixture. A comparison between microwave digestion and conventional reflux digestion shows there are considerable losses of mercury in the open digestion system. The microwave digestion method has been tested satisfactorily using two certified reference materials. Analytical results show a good agreement with certified values. The microwave digestion proved to be a reliable and rapid method for decomposition of biological samples in mercury determination.  相似文献   

11.
V. Meucci  S. Laschi  C. Pretti  G. Soldani 《Talanta》2009,77(3):1143-674
An optimized digestion method coupled to electrochemical detection to monitor lead, copper, cadmium and mercury in fish tissues was developed. Square wave anodic stripping voltammetry (SWASV) coupled to disposable screen-printed electrodes (SPEs) was employed as fast and sensitive electroanalytical method for heavy metals detection. Different approaches in digestion protocols were assessed. The study was focused on Atlantic hake fillets because of their wide diffusion in the human nutrition. Best results were obtained by digesting fish tissue with hydrogen peroxide/hydrochloric acid mixture coupled to solid phase (SP) purification of the digested material. This combined treatment allowed quantitative extraction from fish tissue (muscle) of the target analytes, with fast execution times, high sensitivity and avoiding organic residues eventually affecting electrochemical measurements. Finally, the method has been validated with reference standard materials such as dogfish muscle (DORM-2) and mussel tissues (NIST 2977).  相似文献   

12.
Microwave-assisted enzyme-catalyzed reactions in various solvent systems   总被引:2,自引:0,他引:2  
The work describes the accelerated enzymatic digestion of several proteins in various solvent systems under microwave irradiation. The tryptic fragments of the proteins were analyzed by matrix-assisted laser desorption/ionization mass spectrometry. Under the influence of rapid microwave heating, these enzymatic reactions can proceed in a solvent such as chloroform, which, under traditional digestion conditions, renders the enzyme inactive. The digestion efficiencies and sequence coverages were increased when the trypsin digestions occurred in acetonitrile-, methanol- and chloroform-containing solutions that were heated under microwave irradiation for 10 min using a commercial microwave applicator. The percentage of the protein digested under microwave irradiation increased with the relative acetonitrile content, but decreased as the methanol content was increased. These observations suggest that acetonitrile does not deactivate the enzyme during the irradiation period; in contrast, methanol does deactivate it. In all cases, the digestion efficiencies under microwave irradiation exceed those under conventional conditions.  相似文献   

13.
A highly accurate (definitive) radiochemical neutron activation analysis (RNAA) method was developed for the determination of traces of arsenic (As) in biological materials. It consists of the following steps: (a) irradiation in the nuclear reactor; (b) microwave-assisted sample digestion; (c) quantitative and selective radiochemical separation of arsenates on hydrated ferric oxide nanoparticles dispersed in a macroporous cation exchanger, preceded by a conventional strongly acidic cation exchanger column, and (d) gamma-ray spectrometric measurement of 76As. The suitability and accuracy of the method was demonstrated by analysing several certified reference materials. The detection limit is 8 ng g?1. The standard uncertainty in the determination of As in oriental tobacco leaves is around 3.4%. This, together with its compliance with several other formal requirements, makes the method comparable to primary methods based on isotope dilution mass spectrometry.  相似文献   

14.
We demonstrate that the microwave-assisted protein enzymatic digestion (MAPED) method can be successfully applied to the mass spectrometric characterization of proteins captured on the affinity surfaces of protein chips. The microwave-assisted on-chip tryptic digestion method was developed using a domestic microwave, completing the on-chip proteolysis reaction in minutes, whereas the previous on-chip digestion methods by incubation took hours of incubation time. For the model protein chips, antibody-presenting surfaces were prepared, where anti-α-tubulin1 and antibovine serum albumin (BSA) were immobilized on self-assembled monolayers. The resulting digestion efficiency, displaying sequence coverages of 30 and 14% for α-tubulin1 and BSA, respectively, was comparable to the previous time-consuming incubation studies. It allowed the characterization of immunosensed proteins by MASCOT search using peptide mass fingerprinting. In an example of this method for protein chip applications, BSA naturally involved in fetal bovine serum was unambiguously identified on a model protein chip by imaging mass spectrometry. This work shows that biomass spectrometry techniques can be implemented for surface mass spectrometry and biochip applications. Along with recent advances in imaging mass spectrometry, this technique will provide a new opportunity for high-speed, and thus high-throughput in the future, label-free mass spectrometric assays using protein arrays.  相似文献   

15.
小型微波谐振腔用于蛋白质微波辅助酶解   总被引:2,自引:0,他引:2  
采用微波谐振腔对细胞色素c以及牛血清白蛋白进行微波辅助酶解, 通过电喷雾三级四极杆质谱对得到的肽段进行分析, 证明该方法可用很低的微波功率将蛋白质彻底酶解为多肽. 通过调整微波条件可以使蛋白质的酶解效率基本达到100%, 细胞色素c和牛血清白蛋白的序列覆盖率分别为45%和26%. 该方法不但可将蛋白酶解时间由传统方法的16 h缩短为20 min, 还将功率由使用微波炉时的数百瓦降至20 W.  相似文献   

16.
建立了湿法快速消解-原子荧光光谱仪测定农产品中汞含量的方法。选取大米和芹菜作为实验样品,对消解酸体系(硝酸、硝酸-过氧化氢、硝酸-高氯酸)、消解温度(100、110、120、130、140℃)和消解时间(30、45、60、90 min)等条件进行探讨,确定最佳实验条件,并与常规微波消解效果进行对比。结果表明,优化后的硝酸-高氯酸体系条件下120℃消解30 min,方法在0~2μg/L范围内线性关系良好,相关系数为0.9996,方法检出限为0.001 mg/kg,精密度为2.4%~3.9%。两种消解方法对于大米和芹菜质控样的测定值基本一致,均在质控样范围。相较于常规微波前处理方法,简化了样品前处理流程,提高了工作效率,可为农产品汞含量检测提供可靠的方法支撑。  相似文献   

17.
The formation of drug-protein adducts in vivo may have important clinical and toxicological implications. Consequently, there is a great interest in the detection of these adducts and the elucidation of their role in the processes leading to adverse and idiosyncratic drug reactions. Enzymatic digestion is a crucial step in bottom-up proteomics strategies for the analysis of drug-protein adducts. The chosen proteolytic enzyme and digestion conditions have a large influence on the protein coverage of the modified protein and identification of its modification site. In this work, the enzymatic digestion conditions (pH, temperature and time) of trypsin and thermolysin were optimized specifically for the characterization of Human Serum Albumin (HSA) adducts. Using a Design of Experiments (DOE), it was found that of the three optimized parameters mainly pH and temperature showed strong effects on both responses. The optimized digestion conditions were different from those obtained from the suppliers or literature. Their application to HSA adducts resulted in improved protein coverage and signal intensity regarding the peptide containing the modification site, thereby highlighting the importance of a detailed optimization of digestion conditions.  相似文献   

18.
《Analytical letters》2012,45(13):2136-2158
A rapid, safe, and efficient microwave-assisted acid digestion method is reported to determine thirty-six elements in three international geological reference materials and two in-house reference materials using high resolution inductively coupled plasma mass spectrometry. This method was also employed to determine the radiogenic isotopic composition of Sr and Nd in two geological reference materials by multicollector inductively coupled plasma mass spectrometry. In order to ascertain the most suitable preparation method, four microwave-assisted digestion procedures were compared. The presence of insoluble fluorides on the recoveries of Ba, Rb, Sr and rare earth elements was resolved through sequential evaporation at 80 degrees Celsius followed by microwave digestion. Digestion methods without using HClO4 or H3BO3 and using only H3BO3 were unsuitable due to lower recoveries and higher procedural blanks, respectively. Digestion methods that involved the use of HCl-HNO3-HF and HCl-HNO3-HF-HClO4 were most suitable, resulting in better recoveries of the elements. However, the HCl-HNO3-HF method was preferred compared to HCl-HNO3-HF-HClO4 because the former avoids the use of HClO4 and thus was used in measurements of the radiogenic isotopes of Sr and Nd. The optimized method was used to verify the reference values for the isotopic compositions of Sr and Nd in geological standard reference materials.  相似文献   

19.
The development of a slurry sampling method for the determination of calcium, copper, iron, magnesium and zinc in fish tissue samples by flame atomic absorption spectrometry is described. In comparison with microwave-assisted digestion, the proposed method is simple, requires short time and eliminates total sample dissolution before analysis. Suspension medium was optimized for each analyte to obtain quantitative recoveries from fish tissue samples without matrix interferences. Nevertheless, iron recoveries higher than 46% were not found. Treatment of samples slurried in nitric acid by microwave irradiation for 15-30 s at 75-285 W permitted to achieve efficient recoveries for calcium, iron, magnesium and zinc. Further improvement in the matrix effects for iron determination was accomplished by the use of an additional step of short microwave-assisted suspension treatment. However, standard addition method was required for calcium and copper determination, being necessary hydrochloric acid as suspension medium for the last one. Although copper could not be determined in the certified reference material using microwave-assisted digestion, the accuracy of the slurry sampling method was verified for all the investigated analytes. Detection limits were 22.8 ± 8.0, 0.884 ± 0.092, 5.07 ± 0.76, 35.5 ± 0.7 and 1.17 ± 0.04 μg g−1 for calcium, copper, iron, magnesium and zinc, respectively. The standard deviations obtained using slurry sampling method and microwave-assisted digestion were not significantly different, and the mean relative standard deviation of the over-all method (n = 3) of the slurry sampling method for different concentration levels was below 12%.  相似文献   

20.
The purpose of this study was to evaluate the enzymatic stability of colloidal trypsin powder during heating in a solid-state by using Fourier transform infrared (FT-IR) spectra with chemoinformatics and generalized two-dimensional (2D) correlation spectroscopy. Colloidal crystalline trypsin powders were heated using differential scanning calorimetry. The enzymatic activity of trypsin was assayed by the kinetic degradation method. Spectra of 10 calibration sample sets were recorded three times with a FT-IR spectrometer. The maximum intensity at 1634 cm−1 of FT-IR spectra and enzymatic activity of trypsin decreased as the temperature increased. The FT-IR spectra of trypsin samples were analyzed by a principal component regression analysis (PCR). A plot of the calibration data obtained was made between the actual and predicted trypsin activity based on a two-component model with γ2 = 0.962. On the other hand, a 2D method was applied to FT-IR spectra of heat-treated trypsin. The result was consistent with that of the chemoinformetrical method. The results for deactivation of colloidal trypsin powder by heat-treatment indicated that nano-structure of crystalline trypsin changed by heating reflecting that the β-sheet was mainly transformed, since the peak at 1634 cm−1 decreased with dehydration. The FT-IR chemoinformetrical method allows for a solid-state quantitative analysis of the bioactivity of the bulk powder of trypsin during drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号