共查询到14条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
为了研究材料在高应变率拉伸加载下的动态响应,利用新型爆炸膨胀环实验技术开展了无氧铜试样环的拉伸加载实验,采用激光干涉测试技术获得了试样环拉伸变形过程的径向速度历史。数值计算发现经典JC模型不能较好地描述无氧铜试样环的膨胀过程,于是对JC模型进行了修改:增加了应变的指数硬化项来描述拉伸变形的累积效应;增加了应变率的线性项描述拉伸加载时的应变率效应;利用实验数据拟合了修改后的RJC模型参数,最终较好描述了无氧铜试样环的膨胀变形过程。 相似文献
5.
膨胀环实验技术主要包括爆炸膨胀环实验技术和电磁膨胀环实验技术,实验过程中膨胀环的加载应变率在达到峰值后会随着圆环的膨胀而迅速降低,给研究应变率敏感材料的拉伸碎裂带来极大的不便。在前期提出的液压膨胀环实验技术的基础上,发展了一种恒应变率加载技术。首先,从理论上获得了实现金属圆环恒应变率膨胀所需的液压加载曲线的近似表达式;然后,采用有限元流固耦合数值模拟了液压膨胀环装置中1060-O铝环的膨胀碎裂过程,在给定液压加载曲线下,膨胀环的环向应变率在应变率稳定阶段上下波动范围最大不超过20%;并进一步研究了加载曲线对碎裂过程中应变率的影响规律。在液压膨胀环实验装置上对1060-O铝环开展了膨胀环实验,验证了恒应变率加载技术的可行性。 相似文献
6.
7.
8.
膨胀环技术是一种研究高应变率加载下材料力学性能及动态拉伸破碎特性的实验方法,具有试样的应力状态近似一维、无边界条件等优点,在处理应力波相互作用关系复杂的动态破碎问题方面优势明显。为了方便膨胀环技术在实验室内使用,设计了一种基于轻气炮的冲击膨胀环实验装置,实现了材料的一维高应变率拉伸加载。冲击膨胀环装置采用轻气炮加速低密度高聚物弹丸,高速撞击驱动器内低密度高聚填充物,低密度高聚物挤压膨胀导致驱动器内部压力瞬时达到GPa级,驱动器向外膨胀实现径向加载,试样圆环在驱动器的作用下瞬间获得较高初始速度。实验中利用激光位移干涉仪测量试样的径向速度历史,经过数据处理可以获得材料的应力、应变和应变率的关系,收集试样圆环破片可以获得材料的动态拉伸破碎特性。基于轻气炮的冲击膨胀环实验技术方便、有效,已成功应用于1100-O铝材料的动态性能和破碎特性测试。 相似文献
9.
10.
对膨胀壳体材料失稳的一种简化处理 总被引:5,自引:1,他引:4
提出一种简化的塑性失稳处理并被作为高应变率拉伸下材料破坏的粗估判据。这种准则假设局部化失稳在如下条件下发生:应变及应变率硬化率恰被几何及热软化率平衡。指出了经验本构方程及本征本构方程对膨胀断裂应变的影响。通过算例也说明了热软化壳体在内压作用下的破裂过程。 相似文献
11.
高导无氧铜的临界冲击拉伸速度 总被引:1,自引:0,他引:1
基于气炮系统,提出了一种新的临界冲击拉伸速度实验方法。实验装置主要由2部分组成:气体炮系统驱动弹丸和弹丸击靶牵引多根拉伸杆试件。采用该实验方法对高导无氧铜进行了临界冲击拉伸速度实验。对于一维应力的临界冲击拉伸速度实验,探讨了一种完全热耦合的在颈缩区域计及塑性约束系数以及空穴增长与聚集效应的数值模拟方法。高导无氧铜的临界冲击拉伸速度实验的数值模拟结果表明,采用Zerilli-Armstrong本构关系预估的实验临界冲击拉伸速度比采用Johnson-Cook本构关系预估的更符合实验。 相似文献
12.
利用一级气炮对高导无氧铜(OFHC)进行了圆柱以205 m/s速度冲击平板实验,并进行了数值模拟。用锰铜应力计测试了靶中应力随时间的变化,并进行了回收观测。采用Johnson-Cook(J-C)、Zerilli-Armstrong(Z-A)、Steinberg-Cochran-Guinan(S-C-G)3种本构模型对实验进行了数值模拟。实验结果与数值模拟结果比较表明:就峰值应力而言,采用J-C、Z-A及S-C-G本构模型的计算结果都比较接近实验;就圆柱变形而言,Z-A及S-C-G模型的计算较J-C模型结果更符合实验。然而,速度为500 m/s冲击实验的数值模拟结果表明:3种本构模型的计算结果差异明显。 相似文献
13.