首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we derive rates of uniform strong convergence for the kernel estimator of the regression function in a left-truncation model. It is assumed that the lifetime observations with multivariate covariates form a stationary α-mixing sequence. The estimation of the covariate’s density is considered as well. Under the assumption that the lifetime observations are bounded, we show that, by an appropriate choice of the bandwidth, both estimators of the covariate’s density and regression function attain the optimal strong convergence rate known from independent complete samples.  相似文献   

2.
We propose a unified strategy for estimator construction, selection, and performance assessment in the presence of censoring. This approach is entirely driven by the choice of a loss function for the full (uncensored) data structure and can be stated in terms of the following three main steps. (1) First, define the parameter of interest as the minimizer of the expected loss, or risk, for a full data loss function chosen to represent the desired measure of performance. Map the full data loss function into an observed (censored) data loss function having the same expected value and leading to an efficient estimator of this risk. (2) Next, construct candidate estimators based on the loss function for the observed data. (3) Then, apply cross-validation to estimate risk based on the observed data loss function and to select an optimal estimator among the candidates. A number of common estimation procedures follow this approach in the full data situation, but depart from it when faced with the obstacle of evaluating the loss function for censored observations. Here, we argue that one can, and should, also adhere to this estimation road map in censored data situations.Tree-based methods, where the candidate estimators in Step 2 are generated by recursive binary partitioning of a suitably defined covariate space, provide a striking example of the chasm between estimation procedures for full data and censored data (e.g., regression trees as in CART for uncensored data and adaptations to censored data). Common approaches for regression trees bypass the risk estimation problem for censored outcomes by altering the node splitting and tree pruning criteria in manners that are specific to right-censored data. This article describes an application of our unified methodology to tree-based estimation with censored data. The approach encompasses univariate outcome prediction, multivariate outcome prediction, and density estimation, simply by defining a suitable loss function for each of these problems. The proposed method for tree-based estimation with censoring is evaluated using a simulation study and the analysis of CGH copy number and survival data from breast cancer patients.  相似文献   

3.
This paper develops estimation approaches for nonparametric regression analysis with surrogate data and validation sampling when response variables are measured with errors. Without assuming any error model structure between the true responses and the surrogate variables, a regression calibration kernel regression estimate is defined with the help of validation data. The proposed estimator is proved to be asymptotically normal and the convergence rate is also derived. A simulation study is conducted to compare the proposed estimators with the standard Nadaraya-Watson estimators with the true observations in the validation data set and the complete observations, respectively. The Nadaraya-Watson estimator with the complete observations can serve as a gold standard, even though it is practically unachievable because of the measurement errors.  相似文献   

4.
Semiparametric single-index regression involves an unknown finite-dimensional parameter and an unknown (link) function. We consider estimation of the parameter via the pseudo-maximum likelihood method. For this purpose we estimate the conditional density of the response given a candidate index and maximize the obtained likelihood. We show that this technique of adaptation yields an asymptotically efficient estimator: it has minimal variance among all estimators.  相似文献   

5.
A bias-corrected technique for constructing the empirical likelihood ratio is used to study a semiparametric regression model with missing response data. We are interested in inference for the regression coefficients, the baseline function and the response mean. A class of empirical likelihood ratio functions for the parameters of interest is defined so that undersmoothing for estimating the baseline function is avoided. The existing data-driven algorithm is also valid for selecting an optimal bandwidth. Our approach is to directly calibrate the empirical log-likelihood ratio so that the resulting ratio is asymptotically chi-squared. Also, a class of estimators for the parameters of interest is constructed, their asymptotic distributions are obtained, and consistent estimators of asymptotic bias and variance are provided. Our results can be used to construct confidence intervals and bands for the parameters of interest. A simulation study is undertaken to compare the empirical likelihood with the normal approximation-based method in terms of coverage accuracies and average lengths of confidence intervals. An example for an AIDS clinical trial data set is used for illustrating our methods.  相似文献   

6.
Efficiency of a Liu-type estimator in semiparametric regression models   总被引:1,自引:0,他引:1  
In this paper we consider the semiparametric regression model, y=Xβ+f+ε. Recently, Hu [11] proposed ridge regression estimator in a semiparametric regression model. We introduce a Liu-type (combined ridge-Stein) estimator (LTE) in a semiparametric regression model. Firstly, Liu-type estimators of both β and f are attained without a restrained design matrix. Secondly, the LTE estimator of β is compared with the two-step estimator in terms of the mean square error. We describe the almost unbiased Liu-type estimator in semiparametric regression models. The almost unbiased Liu-type estimator is compared with the Liu-type estimator in terms of the mean squared error matrix. A numerical example is provided to show the performance of the estimators.  相似文献   

7.
Consider the model Y=m(X)+ε, where m(⋅)=med(Y|⋅) is unknown but smooth. It is often assumed that ε and X are independent. However, in practice this assumption is violated in many cases. In this paper we propose modeling the dependence between ε and X by means of a copula model, i.e. (ε,X)∼Cθ(Fε(⋅),FX(⋅)), where Cθ is a copula function depending on an unknown parameter θ, and Fε and FX are the marginals of ε and X. Since many parametric copula families contain the independent copula as a special case, the so-obtained regression model is more flexible than the ‘classical’ regression model.We estimate the parameter θ via a pseudo-likelihood method and prove the asymptotic normality of the estimator, based on delicate empirical process theory. We also study the estimation of the conditional distribution of Y given X. The procedure is illustrated by means of a simulation study, and the method is applied to data on food expenditures in households.  相似文献   

8.
Summary The objective in nonparametric regression is to infer a functiong(x) and itspth order derivativesg (g)(x),p≧1 fixed, on the basis of a finite collection of pairs {x i, g(xi)+Z i} i=1 n , where the noise componentsZ i satisfy certain modest assumptions and the domain pointsx i are selected non-randomly. This paper exhibits a new class of kernel estimatesg n (p) ,p≧0 fixed. The main theoretical results of this study are the rates of convergence obtained for mean square and strong consistency ofg n (p) each of them being uniform on the (0,1).  相似文献   

9.
Estimation of regression functions from independent and identically distributed data is considered. The L2 error with integration with respect to the design measure is used as an error criterion. Usually in the analysis of the rate of convergence of estimates besides smoothness assumptions on the regression function and moment conditions on Y also boundedness assumptions on X are made. In this article we consider partitioning and nearest neighbor estimates and show that by replacing the boundedness assumption on X by a proper moment condition the same rate of convergence can be shown as for bounded data.  相似文献   

10.
We consider the estimation of the regression operator r in the functional model: Y=r(x)+ε, where the explanatory variable x is of functional fixed-design type, the response Y is a real random variable and the error process ε is a second order stationary process. We construct the kernel type estimate of r from functional data curves and correlated errors. Then we study their performances in terms of the mean square convergence and the convergence in probability. In particular, we consider the cases of short and long range error processes. When the errors are negatively correlated or come from a short memory process, the asymptotic normality of this estimate is derived. Finally, some simulation studies are conducted for a fractional autoregressive integrated moving average and for an Ornstein-Uhlenbeck error processes.  相似文献   

11.
Let F be a distribution function in the maximal domain of attraction of the Gumbel distribution such that −log(1−F(x))=x1/θL(x) for a positive real number θ, called the Weibull tail index, and a slowly varying function L. It is well known that the estimators of θ have a very slow rate of convergence. We establish here a sharp optimality result in the minimax sense, that is when L is treated as an infinite dimensional nuisance parameter belonging to some functional class. We also establish the rate optimal asymptotic property of a data-driven choice of the sample fraction that is used for estimation.  相似文献   

12.
We present a new method for estimating the frontier of a multidimensional sample. The estimator is based on a kernel regression on the power-transformed data. We assume that the exponent of the transformation goes to infinity while the bandwidth of the kernel goes to zero. We give conditions on these two parameters to obtain complete convergence and asymptotic normality. The good performance of the estimator is illustrated on some finite sample situations.  相似文献   

13.
We consider wavelet block thresholding method for density estimation. A block-thresholded density estimator is proposed and is shown to achieve optimal global rate of convergence over Besov spaces and simultaneously attain the optimal adaptive pointwise convergence rate as well. These results are obtained in part through the determination of an optimal block length.  相似文献   

14.
Quantile regression for longitudinal data   总被引:18,自引:0,他引:18  
The penalized least squares interpretation of the classical random effects estimator suggests a possible way forward for quantile regression models with a large number of “fixed effects”. The introduction of a large number of individual fixed effects can significantly inflate the variability of estimates of other covariate effects. Regularization, or shrinkage of these individual effects toward a common value can help to modify this inflation effect. A general approach to estimating quantile regression models for longitudinal data is proposed employing ?1 regularization methods. Sparse linear algebra and interior point methods for solving large linear programs are essential computational tools.  相似文献   

15.
Item nonresponse occurs frequently in sample surveys and other applications. Imputation is commonly used to fill in the missing item values in a random sample {Yi;i=1,…,n}. Fractional linear regression imputation, based on the model with independent zero mean errors ?i, is used to create one or more imputed values in the data file for each missing item Yi, where {Xi,i=1,…,n}, is observed completely. Asymptotic normality of the imputed estimators of the mean μ=E(Y), distribution function θ=F(y) for a given y, and qth quantile θq=F-1(q),0<q<1 is established, assuming that Y is missing at random (MAR) given X. This result is used to obtain normal approximation (NA)-based confidence intervals on μ,θ and θq. In the case of θq, a Bahadur-type representation and Woodruff-type confidence intervals are also obtained. Empirical likelihood (EL) ratios are also obtained and shown to be asymptotically scaled variables. This result is used to obtain asymptotically correct EL-based confidence intervals on μ,θ and θq. Results of a simulation study on the finite sample performance of NA-based and EL-based confidence intervals are reported.  相似文献   

16.
We consider block thresholding wavelet-based density estimators with randomly right-censored data and investigate their asymptotic convergence rates. Unlike for the complete data case, the empirical wavelet coefficients are constructed through the Kaplan-Meier estimators of the distribution functions in the censored data case. On the basis of a result of Stute [W. Stute, The central limit theorem under random censorship, Ann. Statist. 23 (1995) 422-439] that approximates the Kaplan-Meier integrals as averages of i.i.d. random variables with a certain rate in probability, we can show that these wavelet empirical coefficients can be approximated by averages of i.i.d. random variables with a certain error rate in L2. Therefore we can show that these estimators, based on block thresholding of empirical wavelet coefficients, achieve optimal convergence rates over a large range of Besov function classes , p≥2, q≥1 and nearly optimal convergence rates when 1≤p<2. We also show that these estimators achieve optimal convergence rates over a large class of functions that involve many irregularities of a wide variety of types, including chirp and Doppler functions, and jump discontinuities. Therefore, in the presence of random censoring, wavelet estimators still provide extensive adaptivity to many irregularities of large function classes. The performance of the estimators is tested via a modest simulation study.  相似文献   

17.
A general depth measure, based on the use of one-dimensional linear continuous projections, is proposed. The applicability of this idea in different statistical setups (including inference in functional data analysis, image analysis and classification) is discussed. A special emphasis is made on the possible usefulness of this method in some statistical problems where the data are elements of a Banach space.The asymptotic properties of the empirical approximation of the proposed depth measure are investigated. In particular, its asymptotic distribution is obtained through U-statistics techniques. The practical aspects of these ideas are discussed through a small simulation study and a real-data example.  相似文献   

18.
We present methods to handle error-in-variables models. Kernel-based likelihood score estimating equation methods are developed for estimating conditional density parameters. In particular, a semiparametric likelihood method is proposed for sufficiently using the information in the data. The asymptotic distribution theory is derived. Small sample simulations and a real data set are used to illustrate the proposed estimation methods.  相似文献   

19.
Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established in the iid Gaussian case. Our work uses the approach that generalizes the one used in [A. Munk, Bissantz, T. Wagner, G. Freitag, On difference based variance estimation in nonparametric regression when the covariate is high dimensional, J. R. Stat. Soc. B 67 (Part 1) (2005) 19-41] for the constant variance case. As is the case when the number of dimensions d=1, and very much contrary to standard thinking, it is often not desirable to base the estimator of the variance function on the residuals from an optimal estimator of the mean. Instead it is desirable to use estimators of the mean with minimal bias. Another important conclusion is that the first order difference based estimator that achieves minimax rate of convergence in the one-dimensional case does not do the same in the high dimensional case. Instead, the optimal order of differences depends on the number of dimensions.  相似文献   

20.
In this paper we consider the estimation of the error distribution in a heteroscedastic nonparametric regression model with multivariate covariates. As estimator we consider the empirical distribution function of residuals, which are obtained from multivariate local polynomial fits of the regression and variance functions, respectively. Weak convergence of the empirical residual process to a Gaussian process is proved. We also consider various applications for testing model assumptions in nonparametric multiple regression. The model tests obtained are able to detect local alternatives that converge to zero at an n−1/2-rate, independent of the covariate dimension. We consider in detail a test for additivity of the regression function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号