首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

2.
The first examples of bridging tin- and germanium-substituted metallocarboxylate ligands have been obtained from the reactions of Ph3SnOH and Ph3GeOH with Os3(CO)12 under basic conditions. Two products: Os3(CO)10(μ-η2-O=COSnPh3)(μ-OMe), 1 (18% yield) and Os3(CO)10(μ-OMe)(μ-OH), 2 (6.9% yield) were obtained from the reaction of Ph3SnOH with Os3(CO)12 in the presence of [Bu4N]OH in methanol solvent. The compound Os3(CO)10(μ-η2-O=COGePh3)(μ-OMe), 3 (7.3% yield) was prepared similarly by using Ph3GeOH in place of Ph3SnOH. Each of the products 1-3 were characterized structurally by single-crystal X-ray diffraction analysis. Compounds 1 and 3 each contain an μ-η2-O=COMPh3, M = Sn or Ge ligand bridging a pair of osmium atoms in a triosmium carbonyl cluster complex.  相似文献   

3.
Reactions of Mo(II)-tetraphosphine complex [MoCl24-P4)] (2; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2) with a series of small molecules have been investigated. Thus, treatment of 2 with alkynes RCCR′ (R = Ph, R′ = H; R = p-tolyl, R′ = H; R = Me, R′ = Ph) in benzene or toluene gave neutral mono(alkyne) complexes [MoCl2(RCCR′)(κ3-P4)] containing tridentate P4 ligand, which were converted to cationic complexes [MoCl(RCCR′)(κ4-P4)]Cl having tetradentate P4 ligand upon dissolution into CDCl3 or CD2Cl2. The latter complexes were available directly from the reactions of 2 with the alkynes in CH2Cl2. On the other hand, treatment of 2 with 1 equiv. of XyNC (Xy = 2,6-Me2C6H3) afforded a seven-coordinate mono(isocyanide) complex [MoCl2(XyNC)(κ4-P4)] (7), which reacted further with XyNC to give a cationic bis(isocyanide) complex [MoCl(XyNC)24-P4)]Cl (8). From the reaction of 2 with CO, a mono(carbonyl) complex [MoCl2(CO)(κ4-P4)] (9) was obtained as a sole isolable product. Reaction of 9 with XyNC afforded [MoCl(CO)(XyNC)(κ4-P4)]Cl (10a) having a pentagonal-bipyramidal geometry with axial CO and XyNC ligands, whereas that of 7 with CO resulted in the formation of a mixture of 10a and its isomer 10b containing axial CO and Cl ligands. Structures of 7 and 9 as well as [MoCl(XyNC)24-P4)][PF6](8′) and [MoCl(CO)(XyNC)(κ4-P4)][PF6] (10a′) derived by the anion metathesis from 8 and 10a, respectively, were determined in detail by the X-ray crystallography.  相似文献   

4.
Crystalline [Li{N(SiMe2OMe)C(tBu)C(H)(SiMe3)}]2 (5), [Li{N(SiMe2OMe)C(Ph)C(H)(SiMe3)}]2 (6), [C(C6H3Me2-2,5)C(H)(SiMe3)}(TMEDA)](7), [Li{N(SiMe(OMe)2)C(tBu)C(H)(SiMe3)}(THF)]2 (8), Li{N(SiMe(OMe)2)C(Ph)C(H)(SiMe3)}(TMEDA) (9) and [Li{N(SiMe2OMe)C(tBu)C(H)(SiMe2OMe)}]2 (10) were readily obtained at ambient temperature from (i) [Li{CH(SiMe3)(SiMe2OMe)}]8 (1) and an equivalent portion of RCN (R=tBu (5), Ph (6) or 2,5-Me2C6H3 (7)); (ii) [Li{CH(SiMe3)(SiMe(OMe)2)}] (2) and an equivalent portion of tBuCN (8) or PhCN (9); and (iii) [Li{CH(SiMe2OMe)2}] (3) and one equivalent of tBuCN (10). Reactions (i) and (ii) were regiospecific with SiMe3−n(OMe)n>SiMe3 in 1,3-migration from C (in 1 or 2)→N. The 1-azaallyl ligand was bound to the lithium atom as a terminally bound κ1-enamide (8 and 10), a bridging η3-1-azaallyl (6), or a bridging κ1-enamide (5). The stereochemistry about the CC bond was Z for 5, 8 and 10 and E for 7. X-ray data are provided for 5, 6, 7, 8 and 10 and multinuclear NMR spectra data in C6D6 or C6D5CD3 for each of 5-10.  相似文献   

5.
[Cp4Fe4(CO)4] (1) reacts with p-BrC6H4Li and MeOH in sequence to afford the functionalized cluster [Cp3Fe4(CO)4(C5H4-p-C6H4Br)] (2), while the reaction of 2 with n-BuLi and MeOH produces [Cp2Fe4(CO)4(C5H4Bu)(C5H4-p-C6H4Br)] (3). The double cluster [Cp3Fe4(CO)4(C5H4)]2(p-C6H4) (4) has been prepared by treatment of [Cp4Fe4(CO)4] with p-C6H4Li2 and MeOH in sequence. The electrochemistry of 2 and 4, as well as the crystal structure of 4 have been investigated.  相似文献   

6.
Reactions of [Pt2(μ-Cl)2(C8H12OMe)2] (1) (C8H12OMe = 8-methoxy-cyclooct-4-ene-1-yl) with various anionic chalcogenolate ligands have been investigated. The reaction of 1 with Pb(Spy)2 (HSpy = pyridine-2-thiol) yielded a binuclear complex [Pt2(Spy)2(C8H12OMe)2] (2). A trinuclear complex [Pt3(Spy)4(C8H12OMe)2] (3) was isolated by a reaction between 2 and [Pt(Spy)2]n. The reaction of 1 with HSpy in the presence of NaOMe generated 2 and its demethylated oxo-bridged tetranuclear complex [Pt4(Spy)4(C8H12-O-C8H12)2] (4). Treatment of 1 with ammonium diisopropyldithiophosphate completely replaced C8H12OMe resulting in [Pt(S2P{OPri}2)2] (5), whereas non-rigid 5-membered chelating ligand, Me2NCH2CH2E, produced mononuclear complexes [Pt(ECH2CH2NMe2)(C8H12OMe)] (E = S (6), Se (7)). These complexes have been characterized by elemental analyses, NMR (1H, 13C{1H}, 195Pt{1H}) and absorption spectroscopy. Molecular structures of 2, 3, 4, 5 and 7 were established by single crystal X-ray diffraction analyses. Thermolysis of 2, 6 and 7 in HDA gave platinum nanoparticles.  相似文献   

7.
A PNA monomer containing thymine as nucleobase (1) was synthesized, characterized and coupled to the pyrazolyl containing ligand 3,5-Me2pz(CH2)2N((CH2)3COOH)(CH2)2NHBoc (2) and to a modified cysteine S-(carboxymethyl-pentafluorphenyl)-N-[(trifluor)carbonyl]-l-cysteine methyl ester (3) yielding the bifunctional chelators 6 and 7, respectively. Reactions of 6 and 7 with the Re(I) tricarbonyl starting material [Re(CO)3(H2O)3]Br afforded the complexes fac-[Re(CO)33-6)]+ (8) and fac-[Re(CO)33-7)] (9), respectively. The identity of 8 and 9 has been established based on IR spectroscopy, elemental analysis, ESI-MS spectrometry and HPLC. The multinuclear NMR spectroscopy (1H, 13C, g-COSY, g-HSQC) has also been very informative in the case of complex 8, showing the presence of rotamers in solution. For 9 the NMR spectrum was too complex due to the presence of rotamers and diastereoisomers. The radioactive congeners of complexes 8 and 9, fac-[99mTc(CO)33-6)]+ (8a) and fac-[99mTc(CO)33-7)] (9a), have been prepared by reacting the precursor fac-[99mTc(CO)3(H2O)3]+ with the corresponding ligands being their identity established by comparing their HPLC chromatograms with the HPLC of the rhenium surrogates.  相似文献   

8.
Reaction between Os(CO)2(PPh3)3 and Me3SnH produces Os(SnMe3)H(CO)2(PPh3)2 (1). Multinuclear NMR studies of solutions of 1 reveal the presence of four geometrical isomers, the major one being that with mutually cis triphenylphosphine ligands and mutually trans CO ligands. Os(SnMe3)H(CO)2(PPh3)2 undergoes a redistribution reaction, at the trimethylstannyl ligand, when treated with Me2SnCl2 giving Os(SnMe2Cl)H(CO)2(PPh3)2 (2). Solutions of 2 again show the presence of four isomers but now the major isomer is that with mutually trans triphenylphosphine ligands and mutually cis CO ligands. The redistribution reaction of 1 with SnI4 produces Os(SnMeI2)H(CO)2(PPh3)2 (3) which exists in solution as only one isomer, that with mutually trans triphenylphosphine ligands and mutually trans CO ligands. Treatment of 3 with I2 cleaves the Os-H bond with retention of geometry giving Os(SnMeI2)I(CO)2(PPh3)2 (4). The crystal structure of 4 has been determined. No isomerization of the trans dicarbonyl complex 4 occurs when 4 is heated, instead there is a formal loss of “MeSnI” and formation of OsI2(CO)2(PPh3)2 (5).  相似文献   

9.
The title compounds were prepared in good yield by treatment of Re(CO)5Cl or [Re(CO)3(H2O)3]Br with sodium dimethyldithiocarbamate hydrate (NaS2CNMe2·H2O) and a neutral ligand yielding eight Re(CO)3(S2CNMe2)(L) derivatives: L = NH31, pyridine (py) 2, imidazole (im) 3, pyrazole (pz) 4, triphenylphospine (PPh3) 5, 1,3,5-triaza-7-phosphaadamantane (PTA) 6, t-butyl isocyanide (t-BuNC) 7, and cyclohexyl isocyanide (CyNC) 8. The resulting new complexes were characterized by 1H and 13C NMR and infrared spectroscopy. Each was also structurally elucidated by X-ray crystallography. General structural features in all eight compounds were similar. The orientation of the three single-faced ligands, py, im and pz, demonstrates an interaction with the filled π orbital of the dithiocarbamate. Compounds were tested for stability under conditions that mimic physiological conditions; 1-4 quickly decomposed, 7 and 8 decomposed over 24 h while 5 and 6 were stable.  相似文献   

10.
The reaction of 2,2′-bidipyrrins H2BDP with the RhI complexes [Rh(COD)(μ-OMe)]2 and [Rh(CO)2(μ-Cl)]2 yields the neutral species [{Rh(COD)}2BDP] (7, 8) and [{Rh(CO)2}2BDP] (2, 9), respectively. Treatment of the COD complexes with carbon monoxide results in the exchange of all COD ligands against CO. Ligand exchange studies on the carbonyl complexes 2 and 9 with different phosphane donors reveal the regioselective exchange of one CO per metal ion. In most cases, the reaction is accompanied by a large conformational change of the tetrapyrrole from a syn to an anti conformation. This conformational change was resolved by a combination of NMR spectroscopy and X-ray diffraction studies.  相似文献   

11.
The syntheses of two chiral bis(phosphite) ligands with tartaric acid-derived backbones: 1 (from dimethyl tartrate) and 2 (from dipyrollidene tartramide), three complexes of 1: cis-Mo(CO)4(1), cis-PtCl2(1), and cis-PdCl2(1) and two complexes of 2: cis-Mo(CO)4(2) and cis-PdCl2(2) are described. Each ligand and complex has been fully characterized by 1H, 13C, and 31P NMR spectroscopy, and the coordination 31P NMR chemical shifts have been compared to those observed for complexes of related ligands. The X-ray crystal structures of each of the metal complexes have also been determined. The X-ray crystal structures indicate that the conformation of the seven-membered chelate ring varies depending on the substituents on the tartrate backbone. However, the conformations of the seven-membered rings do not change when the metal center is changed or when the coordination environment around the metal center is changed.  相似文献   

12.
Reaction of the potassium salt of N-(diisopropoxyphosphoryl)-p-bromothiobenzamide p-BrC6H4C(S)NHP(O)(OiPr)2 (HL) with Cd(II) cations in freshly dried and distilled EtOH leads exclusively to the complex [Cd(p-BrC6H4C(S)NH2-S)(L-O,S)2] ([Cd(LI)L2]), while the same reaction in H2O leads to the complex [Cd(HL-O)2(L-O,S)2] ([Cd(HL)2L2]). The corresponding reactions with Zn(II) always lead to the complex [Zn(L-O,S)2] ([ZnL2]) regardless of the solvent. The crystal structure of [Cd(HL)2L2].2/3H2O reveals to be a polymorph to the previously reported anhydrous [Cd(HL)2L2].  相似文献   

13.
Syntheses of [Me3SbM(CO)5] [M = Cr (1), W (2)], [Me3BiM(CO)5] [M = Cr (3), W (4)], cis-[(Me3Sb)2Mo(CO)4] (5), [tBu3BiFe(CO)4] (6), crystal structures of 1-6 and DFT studies of 1-4 are reported.  相似文献   

14.
The triosmium cluster 1,2-Os3(CO)10(MeCN)2 reacts rapidly with the diphosphine ligand 2,3-bis(diphenylphosphino)-N-p-tolylmaleimide (bmi) at room temperature to give bmi-bridged cluster 1,2-Os3(CO)10(bmi) (2b) as the major product, along with the chelating isomer 1,1-Os3(CO)10(bmi) (2c) and the hydride-bridged cluster HOs3(CO)9[μ-(PPh2)CC{PPh(C6H4)}C(O)N(tolyl-p)C(O)] (3) as minor by-products. All three cluster compounds have been isolated and fully characterized in solution by IR and NMR spectroscopies (1H and 31P), and X-ray crystallography in the case of 2c. Cluster 2b is unstable and readily isomerizes to 2c in quantitative yield on mild heating. The kinetics for the conversion of 2b → 2c have been measured over the temperature range of 318-348 K in toluene solution, and based on the observed activation parameters a nondissociative isomerization process that proceeds via a transient μ2-bridged phosphine moiety is presented. Near-UV photolysis of cluster 2c at room temperature affords HOs3(CO)9[μ-(PPh2)CC{PPh(C6H4)}C(O)N(tolyl-p)C(O)] (3) with a quantum yield of 0.017. The reactivity of clusters 2b, 2c, and 3 is discussed with respect to related diphosphine-substituted Os3(CO)10(P-P) clusters prepared by our groups.  相似文献   

15.
Reaction of a trithiol ligand, 2-(mercaptomethyl)-2-methylpropane-1,3-dithiol (H3L), with tri-iron dodecacarbonyl in toluene produces two hexa-iron clusters (1 and 2). The two clusters are characterised crystallographically and spectroscopically. NMR spectroscopy reveals that the cluster 2 exists in two conformations in equilibrium 2anti ⇔ 2syn and the equilibrium constant Keq = 0.55 under CO atmosphere. In the cluster 2, the central {Fe2S2(CO)6} sub-unit is flanked by two identical {Fe2S2(CO)6} satellite sub-units through thiolate linkages whereas one of the thiolate linkages can further form Fe-S bond with the proximal Fe atom in one of the two satellite sub-units to produce the cluster 1 by expelling one CO. This conversion can be entirely reversed by continuously purging CO through the solution of the cluster 1. As suggested by DFT calculations, the conversion features a key step, the rotation of the Feprox(CO)3 to expose a vacant site for exogenic ligand binding (the S atom from the central sub-unit in this case) with concomitant switch for one of the three CO ligands in the unit of Feprox(CO)3 from terminal to bridging orientation. The conversion from the clusters 1-2 involving one CO uptake is much faster than its reverse process since the latter is an endergonic process characterised by large reaction barriers, as revealed by the DFT calculations.  相似文献   

16.
Reactions of the labile compound [Re2(CO)8(MeCN)2] with thiazole and 4-methylthiazole in refluxing benzene afforded the new compounds [Re2(CO)7{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}(μ-H)] (1, R = H; 2, R = CH3), [Re2(CO)6{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}2(μ-H)] (3, R = H; 4, R = CH3) and fac-[Re(CO)3(Cl){η1-NC3H2(4-R)S}2] (5, R = H; 6, R = CH3). Compounds 1 and 2 contain two rhenium atoms, one bridging thiazolide ligand, coordinated through the C(2) and N atoms and a η1-thiazole ligand coordinated through the nitrogen atom to the same Re as the thiazolide nitrogen. Compounds 3 and 4 contain a Re2(CO)6 group with one bridging thiazolide ligand coordinated through the C(2) and N atoms and two N-coordinated η1-thiazole ligands, each coordinated to one Re atom. A hydride ligand, formed by oxidative-addition of C(2)-H bond of the ligand, bridges Re-Re bond opposite the thiazolide ligand in compounds 1-4. Compound 5 contains a single rhenium atom with three carbonyl ligands, two N-coordinated η1-thiazole ligands and a terminal Cl ligand. Treatment of both 1 and 2 with 5 equiv. of thiazole and 4-methylthiazole in the presence of Me3NO in refluxing benzene afforded 3 and 4, respectively. Further activation of the coordinated η1-thiazole ligands in 1-4 is, however, unsuccessful and results only nonspecific decomposition. The single-crystal XRD structures of 1-5 are reported.  相似文献   

17.
The compounds Ru3(CO)9(SnPh3)2(NCMe)(μ-H)2 (1), Ru3(CO)10(SnPh3)2(μ-H)2 (2), Ru(CO)4(SnPh3)2 (3) and Ru(CO)4(SnPh3)(H) (4) were obtained from the reaction of Ru3(CO)10(NCMe)2 with HSnPh3 in hexane solvent. Compounds 1, 3 and the new compound Ru3(CO)7(SnPh3)3(NCMe)2(μ-H)3 (5) were obtained from reaction of Ru3(CO)10(NCMe)2 with HSnPh3 in a CH2Cl2 and MeCN solvent mixture. Compound 2 and the new compound Ru3(CO)9(SnPh3)3(μ-H)3 (6) were obtained from reactions of 1 and 5 with CO, respectively. Compounds 2 and 6 eliminated benzene when heated to yield Ru3(CO)10(μ-SnPh2)2 (7) and Ru3(CO)9(μ-SnPh2)3 (8) which contain bridging SnPh2 ligands. Compound 7 was found to react with to yield the adduct, (9) in 59% yield by the addition of groups to two of the Ru-Sn bonds to the bridging SnPh2 ligands. Fenske-Hall molecular orbital calculations were performed to provide an understanding of the metal-metal bonding in the clusters of 7 and 9. Compounds 1, 2, 5, 6, 7 and 9 were characterized structurally by single crystal X-ray diffraction analysis.  相似文献   

18.
The reaction between the triosmium cluster 1,2-Os3(CO)10(MeCN)2 and the diphosphine pincer ligand 4,6-bis(diphenylphosphinomethyl)-m-xylene (dppx) has been examined and found to yield the pincer-bridged cluster 1,2-Os3(CO)10(dppx) (2) as the major product, in addition to the pincer-bridged cluster 1,2-Os3(CO)10[1-diphenylphosphino-1-{(2,4-dimethyl-5-diphenylphosphinomethyl)phenyl}-propan-2-ol] (3) in trace amounts (<2% yield). Both cluster products have been isolated and their molecular structures determined by crystallographic analyses. The structural highlights of compounds 2 and 3, which represent the first examples of pincer-ligated metal clusters, are discussed. The origin of the functionalized diphosphine ligand in 3 is traced to the ethanol solvent that was used in the recrystallization of the dppx ligand.  相似文献   

19.
An 8-endo selective Friedel-Crafts cyclization of vinyloxirane 8 with Co2(CO)6-complexed benzeneacetylene was found to give poly-functional eight-membered cyclic compound 9 in high yields.  相似文献   

20.
The objective of the present work was to synthesize mononuclear ruthenium complex [RuCl2(CO)2{Te(CH2SiMe3)2}2] (1) by the reaction of Te(CH2SiMe3)2 and [RuCl2(CO)3]2. However, the stoichiometric reaction affords a mixture of 1 and [RuCl2(CO){Te(CH2SiMe3)2}3] (2). The X-ray structures show the formation of the cis(Cl), cis(C), trans(Te) isomer of 1 and the cis(Cl), mer(Te) isomer of 2. The 125Te NMR spectra of the complexes are reported. The complex distribution depends on the initial molar ratio of the reactants. With an excess of [RuCl2(CO)3]2 only 1 is formed. In addition to the stoichiometric reaction, a mixture of 1 and 2 is observed even when using an excess of Te(CH2SiMe3)2. Complex 1 is, however, always the main product. In these cases the 125Te NMR spectra of the reaction solution also indicates the presence of unreacted ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号