首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The temperature dependence of the electronic mean free path in molybdenum has been obtained from ultrasonic attenuation measurements. For temperatures up to 30 K a T?2 law is followed suggesting the importance of electron-electron scattering in the attenuation mechanism.  相似文献   

2.
A new method is described for the determination of particle size distribution of slurries based on ultrasonic velocity spectrometry combined with gamma-ray transmission. This method shares the advantages of ultrasonic attenuation spectroscopy of being capable of analyzing highly concentrated samples without dilution. However the ultrasonic velocity method is better suited to fine particles of diameter from about 0.1 to 30 μm, a greater volume of slurry is analysed and therefore sampling errors are reduced, and precise theoretical models are readily available to permit the accurate determination of size distribution by inversion of ultrasonic velocity measurements. The method can also be used to accurately determine particle size cut points by linear correlation. Using either inversion or correlation methods, the accuracy of particle size information from ultrasonic velocity spectroscopy is significantly enhanced by the independent measurement of solids loading by gamma-ray transmission. In addition, larger sizes can be measured by combining the ultrasonic velocity method with ultrasonic attenuation measurements. The method has been tested in the laboratory on a wide variety of mineral and paint slurries. The method determined the size distribution of single component silica and alumina samples in water in agreement with laser diffraction measurements and the method successfully distinguished well and poorly dispersed TiO2 suspensions. For composite samples the method discriminated separate TiO2 and CaCO3, components and determined their proportions to within 0.25% volume. In addition the method, in combination with ultrasonic attenuation measurements, determined the size fractions of iron ore slurries below 10 and 30 μm to within 1.3% and 1.0% relative respectively, when compared with laser diffraction measurement of particle size. The CSIRO is presently designing an industrial gauge which will be manufactured and installed in an industrial slurry stream in 1997.  相似文献   

3.
A. Faure  G. Maze  J. Ripoche 《Ultrasonics》1976,14(5):205-208
Using an optical method a surface wave is detected ‘in situ’, which is the reflection from an immersed plane metallic surface, of an ultrasonic beam propagating in water. The amplitude and attenuation of the beam are measured on a stainless steel sample and it is shown that the attenuation fits the f4 law, where f is the frequency.  相似文献   

4.
We studied the effect of hydralazine on tumor blood volume fraction and microvascular random flow velocity magnitude by IVIM weighted MRI in conjunction with dynamic Gd-DTPA-Albumin enhanced MRI. Blood volume fraction maps were obtained from the dynamic Gd-DTPA-Albumin enhanced MRI measurements. The average blood volume fraction of R3230 AC adenocarcinoma decreased from 0.125 +/- 0.022 (s.d.) ml/g to 0.105 +/- 0.018 (s.d.) ml/g (p < 0.001) after the administration of hydralazine at a dose of 5 mg/kg. The microvascular random flow velocity magnitude maps were obtained from the IVIM weighted MRI signals by utilizing the Gd-DTPA-Albumin measured blood volume fractions as an input in the compartmental modeling analysis of the IVIM weighted MRI signal. The random-directional microvascular flow induced MRI signal attenuation was separated from the molecular diffusion induced signal attenuation. Flow induced attenuation was more significant after the administration of hydralazine. The mean microvascular random flow velocity magnitude increased from 0.52 +/- 0.15 (s.d.) mm/sec to 0.73 +/- 0.23 (s.d.) mm/sec (p < 0.05) in the presence of the above blood volume fraction change.  相似文献   

5.
Staff at Pacific Northwest National Laboratory have developed and applied a simple ultrasonic attenuation measurement to measure slurry concentration in real time during suspension of solids settled in a large tank. This paper presents a simple single frequency ultrasonic measurement technique that demonstrates the ability of ultrasonic sensors to measure slurry concentration. Sensor calibration data show that in this attenuation regime ultrasonic signal attenuation is proportional to the applied frequency and to the slurry volume fraction. Real-time measurements of ultrasonic signal attenuation were used to track the process of slurry mixing using single sensors and sensor arrays. Results from two experiments show the use of real-time measurements of ultrasonic signal attenuation to track the process of slurry mixing in situ and to track the ability to maintain a well-mixed steady state condition. Comparison of concentration means of the ultrasonic measurements with concentration means obtained from discrete extractive measurements show that the distributions overlap and cannot be statistically distinguished. The real-time ultrasonic sensor can be used as a primary measurement method or to reduce reliance upon extractive methods to measure slurry density and solids concentration.  相似文献   

6.
Attenuation of ultrasonic longitudinal waves in some particle-reinforced polymer composites is studied theoretically by a micromechanical model based on a differential (incremental) scheme. A set of differential equations is established by which the attenuation spectrum of the composite can be computed from the known properties of viscoelastic matrix and elastic particles. For a composite reinforced with glass particles with radius 0.15 mm, the proposed scheme is shown to predict the attenuation in better agreement with the foregoing experimental results than the previous simplistic independent scattering model. Based on this scheme, the dependence of the longitudinal attenuation spectrum of a particulate polymer composite on the wavelength-to-particle radius ratio and the particle volume fraction is examined in detail. It is then shown theoretically that the attenuation of the composite decreases monotonically with the particle volume fraction when the particle radius is sufficiently small compared to the incident wavelength, while it shows non-monotonic particle-fraction dependence when the ratio of the particle radius to the wavelength is larger. To examine this theoretical finding from an experimental point of view, the longitudinal attenuation in a glass-particle-reinforced polyester composite with particle radius 0.0225 mm is measured for different particle volume fractions. The measured attenuation characteristics are shown to support the qualitative features of the theoretical prediction.  相似文献   

7.
Abstract

Ti-6Al-4V alloy with different microstructures was investigated by means of ultrasonic attenuation measurements. Widmanstätten and equiaxed microstructures were obtaining by heat treating a Ti-6Al-4V alloy. These two microstructures were over-aged at 545 °C at different ageing times. In order to find out the factors affecting the variation in the ultrasonic attenuation, the heat-treated samples were examined by optical microscopy and scanning electron microscopy. Based on the theory of ultrasonic attenuation in a solid media, the mechanisms of ultrasonic attenuation in the Ti-6Al-4V alloy with different microstructures were analysed. It was found that in both cases with Widmanstätten and equiaxed microstructures, the ultrasonic attenuation increased with frequency. After ageing, the ultrasonic attenuation was mainly attributed to the scattering loss which included the stochastic and the Rayleigh scattering due to the precipitation of Ti3Al particles homogeneously distributed in the α phase. Data analysis presented in the study showed that ultrasonic attenuation yields more accurate area fractions of precipitates predictions when a polynomial fit is performed.  相似文献   

8.
The loss and phase advance due to diffraction are experimentally observed by measuring the amplitude and phase of radio frequency (rf) tone burst signals in the VHF range, in an ultrasonic transmission line consisting of a buffer rod with an ultrasonic transducer on one end, a couplant of water, and a solid specimen of synthetic silica glass. The measured results agree well with the calculated results from the exact integral expression of diffraction. The diffraction effects on the velocity and attenuation measured in this frequency range and their corrections are investigated to realize more accurate measurements. It is shown that attenuation measurements are influenced by diffraction losses and can be corrected by numerical calculations, and that velocity measurements are affected by the phase advance caused by diffraction. This investigation demonstrates that, in complex-mode velocity measurements, in which the velocity is determined from the measured phase of the signals, the true velocity at each frequency can be obtained by correction using the numerical calculation of diffraction. Based on this result, a new correction method in amplitude-mode velocity measurements is also proposed. In this new method, the velocity is determined from the intervals of interference output obtained by sweeping the ultrasonic frequency for the superposed signals generated by the double-pulse method. Velocity may be measured accurately at frequencies in the Fresnel region, and diffraction correction is essential to obtain highly accurate values with five significant figures or more.  相似文献   

9.
Modulus–porosity relationships are critical for engineered bone tissue scaffold materials such as hydroxyapatite (HA), where porosity is essential to biological function. Resonant ultrasound spectroscopy (RUS) measurements revealed that the Young's modulus, E, and shear modulus, G, of both alumina and HA decrease monotonically with increasing volume fraction porosity, P, for 0.06 < P < 0.39 (alumina) and 0.05 < P < 0.51 (HA). Although the elastic moduli of porous materials have been measured by a number of different ultrasonic resonance techniques (of which the RUS technique is one example) and over the last decade the elastic moduli of many solids have been measured by the RUS technique, this study is the first systematic RUS study of porous materials. Comparison of E versus P data for alumina (which has been studied extensively) with literature data from several measurement techniques indicates the RUS technique is effective for modulus–porosity measurements. Another key result is that although the HA specimens included in this study have a unimodal pore size distribution, the details of the decrease in E and G with increasing P agree well with literature data for HA with both unimodal and bimodal pore size distributions. In addition, Poisson's ratio exhibits a local minimum in the porosity range of 0.2 < P < 0.25 for both HA and alumina, which may be related to the pore morphology evolution during sintering.  相似文献   

10.
We have measured the ultrasonic attenuation in the intermediate state of high purity single crystals of tin. Andreev's theory extended for arbitrary ql values has been applied to determine the sizes of the normal and superconducting regions, fraction of the normal material at a given filed and the demagnetisation coefficient of the specimen.  相似文献   

11.
We use nuclear magnetic resonance (NMR) imaging of C2F6 gas to characterize porosity, mean pore size, and permeability of partially sintered ceramic (Y-TZP Yttria-stabilized tetragonal-zirconia polycrystal) samples. Conventional measurements of these parameters gave porosity values from 0.18 to 0.4, mean pore sizes from 10 nm to 40 nm, and permeability from 4 nm(2) to 25 nm(2). The NMR methods are based on relaxation time measurements (T(1)) and the time dependent diffusion coefficient D(Delta). The relaxation time of C2F6 gas is longer in pores than in bulk gas and it increases as the pore sizes decrease. NMR yielded accurate porosity values after correcting for surface adsorption effects. A model for T(1) dependence on pore size that accounts for collisions between gas molecules and walls as well as surface adsorption effects is proposed. The model fits the experimental data well. Finally, the long time limit of D(Delta)/D(o), where D(o) is the bulk gas diffusion coefficient is useful for measuring tortuosity, while the short time limit was not achieved experimentally and could not be used for calculating surface-area to volume (S/V) ratios.  相似文献   

12.
The intensities, placements andE2/M1 mixing ratios of transitions in the decay of154Eu have been carefully studied to provide accurate data for microscopic calculations. Coincidence relationships in the decay of154Eu have been studied extensively with a multiparameterγ-γ coincidence system with two large volume Ge(Li) detectors. Spectra in coincidence with twenty energy gates were analyzed. Twenty-nine new coincidence relationships were established and confirmed most, but not all, of several levels previously assigned by energy fits only. From an analysis of coincidence spectra and singles spectra with a 18% efficiency Ge(Li) detector new information on the gamma-ray intensities were obtained. Precise values of theE2/M1 mixing ratios of transitions from the gamma- and beta-vibrational bands to the g.s. band have been determined fromγ-γ directional correlation measurements with a NaI(Tl)-Ge(Li) detector coincidence system. Mixing ratios were obtained for a number of other transitions including those fromK π =0? and 2+ bands from direct and skipped cascade correlations.  相似文献   

13.
The usual theories of ultrasonic attenuation (Landau-Rumer and Akhiezer) are in disagreement with experiments involving hypersonic phonons (Brillouin scattering). This is shown here by measurements on NaCl and KCl. We observe a Tn dependence with n approximately equal to 2.8, and an attenuation increasing with temperature in the low and high temperature range respectively. An extension of the Landau-Rumer and Akhiezer theories to hypersonic frequencies is proposed. Our theoretical expressions give a good account of the temperature dependence of the attenuation in the whole temperature range.  相似文献   

14.
Three types of commercially available carbonate rocks were used in the study to determine the effect of thermal treatment in the range from 100 °C to 500 °C on porosity features in terms of two different approaches such as pore shape factor and quality index values. The ratio of the ultrasonic velocity measurements before and after water saturation was used to differentiate porosity of pores from porosity of cracks under varying temperatures. It was found that, pores in Burdur Beige and Usak White are in the form of cracks, which are situated through inner structure. On the other hand, pores in Patara Limestone are in the form of porosity with lower pore shape factor values. Quality index calculation is another approach based on the comparison of the measured and theoretical ultrasonic velocity values. When the rocks were subjected to higher temperatures, internal stress was developed, crack lengths and numbers were increased and finally the higher pore shape factor and lower quality index values were obtained. This situation was proven by the higher water absorption values for all the stone types with the higher pore shape factor and lower quality index values depend on the noticeable increase in effective porosity values.  相似文献   

15.
An anomalous attenuation peak at 95.5°K has been observed for shear ultrasonic waves transmitted along the c-axis of two holmium single crystals. The velocity change across this temperature is on the order of 10?4. In the presence of an external magnetic field, the peak moves toward high temperatures for both Ha and Hc. A rotation of the field in the basal plane produces a two-fold symmetry pattern in the attenuation. A double peak structure centered at the c-plane has also been observed when the field is rotated away from the a-axis. A considerable fraction of the attenuation peak appears to go as sin2 θ where θ is the angle between the shear wave polarization and the external field.  相似文献   

16.
This paper is focused on nanoporous methylsilsesquioxane deposited using a polymer approach and shows the complementarities of three experimental techniques: ellipsometric porosimetry (EP), X-ray reflectivity (XRR), and grazing incidence small-angle X-ray scattering (GISAXS). XRR and EP confirm that the pore volume fraction is larger for smaller dielectric constants. EP and GISAXS find mean pore sizes independent of the porosity, in the range 3-4 nm as diameter. GISAXS is the only technique that can estimate the porosity isotropy. Finally, the impact of integration processes such as surface plasma treatment, etching or stripping on the porosity is evaluated: the porosity remains unchanged except in the superficial layer where an increase of the pore size (or of the roughness) is observed.  相似文献   

17.
The prediction of volume fractions in order to measure the multiphase flow rate is a very important issue and is the key parameter of multi-phase flow meters (MPFMs). Currently, the gamma ray attenuation technique is known as one of the most precise methods for obtaining volume fractions. The gamma ray attenuation technique is based on the mass attenuation coefficient, which is sensitive to density changes; density is sensitive in turn to temperature and pressure fluctuations. Therefore, MPFM efficiency depends strongly on environmental conditions. The conventional solution to this problem is the periodical recalibration of MPFMs, which is a demanding task. In this study, a method based on dual-modality densitometry and artificial intelligence (AI) is presented, which offers the advantage of the measurement of the oil–gas–water volume fractions independent of density changes. For this purpose, several experiments were carried out and used to validate simulated dual modality densitometry results. The reference density point was established at a temperature of 20 °C and pressure of 1 bar. To cover the full range of likely density fluctuations, four additional density sets were defined (at changes of ±4% and ±8% from the reference point). An annular regime with different percentages of oil, gas and water at different densities was simulated. Four features were extracted from the transmission and scattered detectors and were applied to the artificial neural network (ANN) as inputs. The input parameters included the 241Am full energy peak, 137Cs Compton edge, 137Cs full energy peak and total scattered count, and the outputs were the oil and air percentages. A multi-layer perceptron (MLP) neural network was used to predict the volume fraction independent of the oil and water density changes. The obtained results show that the proposed ANN model achieved good agreement with the real data, with an estimated root mean square error (RMSE) of less than 3.  相似文献   

18.
Kim KS  Lee KI  Kim HY  Yoon SW  Hong SH 《Ultrasonics》2007,46(2):177-183
The sound velocity and the attenuation coefficient of EPDM (Ethylene-propylene Diene Monomer) composites incorporated with Silicon Carbide particles (SiCp’s) of various volume fractions (0-40%) were experimentally and theoretically investigated. For the experiment a through-transmission technique was used. For the theoretical prediction, some mechanical property models such as Reuss model and Coherent Potential Approximation (CPA) model etc. were employed. The experimental results showed that the sound velocity decreased with the increase of the SiCp volume fraction up to 30% and then increased with the 40 vol% specimen. The attenuation coefficient was increased with the increasing SiCp volume fractions. The modified Reuss model with a longitudinal elastic modulus predicted most well the experimental sound velocity and elastic modulus results.  相似文献   

19.
This research deals with the ultrasonic characterization of thermal damage in concrete. This damage leads to the appearance of microcracks which then evolve in terms of volume rate and size in the material. The scattering of ultrasonic waves from the inclusions is present in this type of medium. The propagation of the longitudinal wave in the heterogeneous media is studied via a homogenization model that integrates the multiple scattering of waves. The model allows us to determine the phase velocity and the attenuation according to the elements which make the medium. Simulations adapted to the concrete are developed in order to test the responses of the model. These behaviors are validated by an experimental study: the measurements of phase velocity and attenuation are performed in immersion, with a comparison method, on a frequency domain which ranges from 160 kHz to 1.3 MHz. The analysis of different theoretical and experimental results obtained on cement-based media leads to the model validation, on the phase velocity behavior, in the case of a damage simulated by expanded polystyrene spheres in granular media. The application to the case of a thermally damaged concrete shows a good qualitative agreement for the changes in velocity and attenuation.  相似文献   

20.
《Ultrasonics》2005,43(1):5-12
Attenuation of ultrasonic longitudinal waves in some particle-reinforced polymer composites is studied theoretically by a micromechanical model based on a differential (incremental) scheme. A set of differential equations is established by which the attenuation spectrum of the composite can be computed from the known properties of viscoelastic matrix and elastic particles. For a composite reinforced with glass particles with radius 0.15 mm, the proposed scheme is shown to predict the attenuation in better agreement with the foregoing experimental results than the previous simplistic independent scattering model. Based on this scheme, the dependence of the longitudinal attenuation spectrum of a particulate polymer composite on the wavelength-to-particle radius ratio and the particle volume fraction is examined in detail. It is then shown theoretically that the attenuation of the composite decreases monotonically with the particle volume fraction when the particle radius is sufficiently small compared to the incident wavelength, while it shows non-monotonic particle-fraction dependence when the ratio of the particle radius to the wavelength is larger. To examine this theoretical finding from an experimental point of view, the longitudinal attenuation in a glass-particle-reinforced polyester composite with particle radius 0.0225 mm is measured for different particle volume fractions. The measured attenuation characteristics are shown to support the qualitative features of the theoretical prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号