首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comprehensive two-dimensional liquid chromatographic system incorporating a vacuum-evaporation interface was developed. Normal-phase liquid chromatography with a CN microcolumn was used as the first dimension (1(st)-D), and reversed-phase liquid chromatography with a C(18) monolithic column was used as the second dimension (2(nd)-D). An electronically controlled dual-position, ten-port valve with two identical storage loops served as the interface and the analysis time in the 2(nd)-D was 1.5 min. The solvent in the loops of the interface was evaporated at 25 degrees C under vacuum conditions, leaving the analytes on the inner wall of the loops. The mobile phase of the 2(nd)-D dissolved the analytes in the loop and injected them onto the second column, allowing an on-line solvent exchange of the fractions from the 1(st)-D to the 2(nd)-D. The chromatographic resolution of analytes on the two dimensions was evaluated. Sample loss due to evaporation in the interface was investigated with standard samples having different boiling points. The usefulness of the comprehensive 2-DLC system was demonstrated in the analysis of a traditional Chinese medicine Radix salviae miltiorrhiza bage extract.  相似文献   

2.
A vacuum assisted dynamic solvent evaporation interface for coupling of two-dimensional normal phase/reverse phase liquid chromatography was developed and evaluated. A normal-phase liquid chromatographic (NPLC) column of a 250 mm × 4.6 mm I.D. 5 μm CN phase was used as the first dimension, and a reversed-phase liquid chromatographic (RPLC) column of 250 mm × 4.6 mm I.D. 5 μm C18 phase was used as the second dimension. The eluent from the first dimension flowed into a fraction loop, and the solvent in the eluent was dynamically evaporated and removed by vacuum as it was entering the fraction loop of the interface. The non-evaporable analytes was retained and enriched in about 5–25 μL solution within the loop. Up to 1 mL/min of mobile phase from the first dimension can be evaporated and removed dynamically by the interface. The mobile phase from the second dimension then entered the loop, and dissolved the concentrated analytes retained inside the loop, and carried them onto the second dimension column for further separation. The operation conditions of the two dimensions were independent from each other, and both dimensions were operated at their optimal chromatographic conditions. We evaluated the interface by controlling the loop temperature in a water bath at normal temperature, and investigated the sample losses by using standard samples with different boiling points. It was found that the sample loss due to evaporation in the interface was negligible for non-volatile samples or for components with boiling point above 340 °C. The interface realizes fast solvent removal of mL volume of fraction and concentration of the fraction into tenth of μL volume, and injection of the concentrated fraction on the secondary column. The chromatographic performance of the two-dimensional LC system was enhanced without compromise of separation efficiency and selectivity on each dimension.  相似文献   

3.
正相模式/反相模式的二维液相色谱系统的构建与应用   总被引:1,自引:0,他引:1  
兰韬  焦丰龙  唐涛  王风云  李彤  张维冰 《色谱》2008,26(3):374-377
以4.6mm×50 mm i. d.的Hypersil SiO2正相色谱柱为第一维,4.6mm×250 mm i. d.的Kromasil C18反相色谱柱为第二维,通过升高第二维色谱温度的方法增加两维流动相间互溶性的方法构建了定量环-阀切换接口的二维液相色谱系统(NPLC×RPLC)。根据有机溶剂的特征,在第一维正相色谱流动相中加入二氧六环;第二维反相色谱流动相中加入异丙醇,在改善流动相兼容性的同时,有效调整分离选择性。采用此系统对正天丸样品进行分离分析,达到1120的峰容量。  相似文献   

4.
用内径为0.53 mm的填充毛细管正相液相色谱为第一维, 用4.6 mm(i.d.)×50 mm RP-18e整体柱反相色谱为第二维, 建立了定量环-阀切换接口的全二维液相色谱系统(NPLC×RPLC). 第一维色谱分离洗脱出的组分交替存储在十通阀上的两个定量环中, 同时定量环中前一个组分被转移到第二维进行反相分离. 因为第一维的流动相流量仅是第二维的1/500, 自然解决了流动相兼容问题. 采用芳香族化合物的混合物和中药丹参正己烷提取液对该全二维液相系统的分离能力进行了评价.  相似文献   

5.
李笃信  魏远隆  宋伦  李彤  杜一平  张维冰 《化学学报》2009,67(21):2481-2485
在二维液相色谱中, 第二维的分离速度是制约其发展的重要因素. 升高色谱柱温度可以有效降低流动相粘度, 加快溶质在两相间的传质速率, 有效加快分析速度. 以离子交换色谱法(WAX)为第一维分离模式和反相色谱法(RP)为第二维分离模式, 十通阀和两个捕集柱为接口, 通过将第二维色谱柱温度升高到80 ℃和提高流量到3 mL/min, 构建了高温WAX/RP二维液相色谱系统. 以4种标准蛋白的酶解物为样品评价系统的分离性能, 第一维共有33个馏分被捕集并导入到第二维分析, 高温二维液相色谱系统识别出187个色谱峰.  相似文献   

6.
Quantification of neurotransmitters as biologically active analytes in neurological samples is of high interest for studying their effect on multiple targets. This work is part of a strategy involving two-dimensional liquid chromatography (2D LC) system with mass spectrometry (MS) detection. The concept of the on-line LC system is the coupling of reversed phase liquid chromatography (RPLC, the second separation dimension) to ion-exchange chromatography (IEC, the first dimension). Our objective in this study is to find the appropriate second dimension column, ensuring that samples of neurotransmitters are refocused and separated on it. Silica-based columns designed specifically to retain polar compounds were tested in LC conditions and compared with results obtained with a porous graphitic carbon (PGC, Hypercarb) column. These polar embedded, polar endcapped, and high-density alkyl chain columns successfully separated analytes in question using mobile phase systems with high percentage of water, or even pure water. Only Hypercarb column provided efficient retention of the most polar neurotransmitters and could be used for trapping and preconcentrating the compounds without rapid breakthrough.  相似文献   

7.
A comprehensive orthogonal two-dimensional liquid chromatography (2D-LC) based on the modification of mobile phases was developed with a sample loop–valve interface. To improve the compatibility of mobile phases and analysis speed, some special solvents were chosen as the mobile phases, and the column temperature was elevated to decrease the viscosity of mobile phases of reversed-phase liquid chromatography (RPLC). Based on this principle, the first dimension was normal-phase liquid chromatography (NPLC) with a SiO2 column, and the second dimension was reversed-phase liquid chromatography containing two tandem C18 columns. 1,4-Dioxane was used in the NPLC mobile phase, and isopropyl alcohol was employed in the RPLC mobile phase. Moreover, the elevated column temperature enabled the reduction of the backpressure and using tandem C18 columns to improve the resolving power in RPLC. The new comprehensive 2D-LC system and applied strategy offered a novel idea for construction of 2D-LC system. A traditional Chinese medicine, Zhengtian pill, was used as the test sample to evaluate the constructed 2D-LC system. 876 peaks were detected, and the peak capacity reached 1740.  相似文献   

8.
Three different comprehensive 2-D HPLC systems for the separation of phenolic antioxidants have been developed on the basis of different selectivities of a PEG-silica column in the first dimension and a packed or monolithic C18 or a ZR-CARBON column, respectively, in the second dimension. Two-dimensional comprehensive liquid chromatography using a serially connected short PEG-silica column and a conventional C18-silica or a ZR-CARBON column in the second dimension was tested to improve the resolution of the earlier eluting compounds in the first dimension. Various types of interface were used to connect the columns in the first and in the second dimension: i) two injection sampling loops of 100 microL in conventional arrangement; ii) a 10-port 2-position valve equipped with two trapping X-Terra columns instead of loops; and iii) two analytical D2 columns in parallel. The mobile phase in the first dimension has a lower elution strength than in the second dimension, allowing band compression of the solutes transferred from the first to the second dimension. This effect was enhanced using trapping columns instead of sampling loops as the interface between the two dimensions, thus allowing a decrease in the time of analysis. These systems were used for the analysis of beer samples. The relative location of the components in the 2-D retention plane varied in relation to their chemical structure in each instrumental set-up and allowed positive peak identification.  相似文献   

9.
In this study, an improved online comprehensive two‐dimensional liquid chromatography platform coupled to tandem mass spectrometry was developed for the analysis of complex polyphenolic samples. A narrowbore hydrophilic interaction chromatography column (150 × 2.0 mm, 3.0 μm, cross‐linked diol) was employed in the first dimension, while a reversed‐phase column based on monodisperse sub‐2 μm fully porous particles (50 × 3.0 mm, 1.9 μm d.p.) with high surface area (410 m2/g) was employed in the second dimension. The combination of a trapping column modulation interface with the high retentive fully porous monodisperse reversed‐phase column in the second dimension resulted in higher peak capacity values (1146 versus 867), increased sensitivity, sharper and more symmetrical peaks in comparison with a conventional loop‐based method, with the same analysis time (70 min). The system was challenged against a complex polyphenolic extract of a typical Italian apple cultivar, enabling the simultaneous separation of multiple polyphenolic classes, including oligomeric procyanidins, up to degree of polymerization of 10. Hyphenation with an ion trap time‐of‐flight mass spectrometer led to the tentative identification of 121 analytes, showing how this platform could be a powerful analytical tool for the accurate profiling of complex polyphenolic samples.  相似文献   

10.
A 2D liquid chromatography (LC) system using hydrophilic interaction chromatography (HILIC) and reversed phase columns has been employed for comprehensive (LC × LC) separation of rat muscle tissue micro-dialysate. Incorporation of an on-line reverse-phase solid phase extraction (SPE) enrichment column in front of the first dimension enabled aqueous samples with high salt concentrations to be injected directly without compromising the chromatographic performance of the HILIC column. Since the SPE enrichment column allowed injection of large sample volumes (e.g. 450 μL), a capillary HILIC column (inner diameter 0.3 mm) could be employed instead of a larger column which is often used in the first dimension to load sufficient amounts of sample. The two chromatographic dimensions were connected using a column selector system with 18, 1.0 mm I.D. C18 “transition” SPE columns. A PLRP C18 column was used in the second dimension. The 2D LC system’s performance was evaluated with a tryptic digest mixture of three model proteins. Good trapping accuracy (HILIC→transition SPE→RP recovery >95%) and repeatability (within-and between day retention time RSDs of first and second dimension chromatography >1%) was achieved. A dialysis sample of rat muscle tissue was separated with the 2D system, revealing complexity and large differences in concentrations of the various compounds present, factors which could potentially interfere with the quantification and monitoring of two target analytes, arg-bradykinin and bradykinin. Subsequently, “Heart-cut” 2D LC-electrospray–mass spectrometry (ESI–MS) with post-column on-line standard injection was employed to monitor arg-bradykinin and bradykinin levels as a function of various muscle conditions. The method’s quantification precision was RSD = 3.4% for bradykinin.  相似文献   

11.
Eckstein  H.  Schott  H. 《Chromatographia》1984,19(1):236-239
Summary A critical step in the chemical preparation of oligonucleotides is the chromatographic purification of the deprotected oligomers. In case of large quantities of reaction products, the oligonucleotides are first enriched on a QAE-Sephadex column at low pressure. The obtained fractions are then purified by multidimensional chromatography making use of three independent physical properties of the solutes: molecular size, ionic net charge and hydrophobicity. In the first dimension size exclusion chromatography (Sephadex G-15) is used. In the second dimension the high molecular weight fraction from the size exclusion chromatography is applied to a HPLC ion-exchange column (Partisil-10 SAX). Usually the last peak is collected and transferred to a HPLC reversed phase column (Nucleosil C18) where the components are separated according to their hydrophobicity in the third dimension. The efficiency of this multi-dimensional chromatographic procedure is demonstrated by the unequivocal fingerprints after radioactive labelling of the isolated oligonucleotides. Presented at the 15th International Symposium on Chromatography, Nürnberg, October 1984  相似文献   

12.
A novel approach for the selection of the operational parameters (linear velocity, column length) for a comprehensive 2D-LC system is discussed. Starting point for the calculations is a given second dimension ((2)D) separation and a desired peak capacity for the 2D system. Using the theory developed here the optimum settings for the first dimension ((1)D) column can be derived. Theory clearly indicates that the choice of the (1)D conditions is basically limited to just one set of column lengths and linear velocities. The new method is tested on a comprehensive two-dimensional liquid chromatography system which uses size-exclusion chromatography (SEC) followed by reversed phase liquid chromatography (RPLC). A novel LC/LC interface, using a six-port valve rather than storage loops, joins the two chromatographic dimensions. From a theoretical comparison of continuous low flow and stop-flow operation the latter method was found to be an attractive mode of interfacing. The common idea that stop-flow operation results in additional band broadening is shown to be incorrect. The new interface design operated in the stop-flow mode permits the use of conventional analytical diameter HPLC columns, 7.8mm for SEC and 4.6mm for RPLC. The reversed phase chromatography utilizes a monolithic C-18 modified silica column, which produces fast and efficient analyses. As test samples complex mixtures of peptides were analyzed.  相似文献   

13.
Two‐dimensional liquid chromatography largely increases the number of separated compounds in a single run, theoretically up to the product of the peaks separated in each dimension on the columns with different selectivities. On‐line coupling of a reversed‐phase column with an aqueous normal‐phase (hydrophilic interaction liquid chromatography) column yields orthogonal systems with high peak capacities. Fast on‐line two‐dimensional liquid chromatography needs a capillary or micro‐bore column providing low‐volume effluent fractions transferred to a short efficient second‐dimension column for separation at a high mobile phase flow rate. We prepared polymethacrylate zwitterionic monolithic micro‐columns in fused silica capillaries with structurally different dimethacrylate cross‐linkers. The columns provide dual retention mechanism (hydrophilic interaction and reversed‐phase). Setting the mobile phase composition allows adjusting the separation selectivity for various polar substance classes. Coupling on‐line an organic polymer monolithic capillary column in the first dimension with a short silica‐based monolithic column in the second dimension provides two‐dimensional liquid chromatography systems with high peak capacities. The silica monolithic C18 columns provide higher separation efficiency than the particle‐packed columns at the flow rates as high as 5 mL/min used in the second dimension. Decreasing the diameter of the silica monolithic columns allows using a higher flow rate at the maximum operation pressure and lower fraction volumes transferred from the first, hydrophilic interaction dimension, into the second, reversed‐phase mode, avoiding the mobile phase compatibility issues, improving the resolution, increasing the peak capacity, and the peak production rate.  相似文献   

14.
The effects of temperature and mobile phase on LC chromatographic separation of phenolic antioxidants on zirconia-based columns were investigated. Unlike silica-based materials, zirconia columns show excellent thermal stability over a wide range of temperatures and enable high-temperature separations. Enthalpic and entropic contributions to the retention of phenolic compounds on ZR-Carbon and ZR-Carbon C18 columns were determined from retention versus temperature plots in order to elucidate the retention mechanism of sample compounds over the temperature range up to 14 degrees C. High-temperature liquid chromatography on ZR-Carbon columns was used for comprehensive LC x LC two-dimensional separation systems based on the different selectivity of a Zorbax SB micro-column used in the first dimension and a ZR-Carbon column used in the second dimension. Two-dimensional LC x LC systems employing a setup with two alternately operated parallel ZR-Carbon columns in the second dimension were used for the analysis of phenolic antioxidants in beer and wine samples.  相似文献   

15.
The separation selectivity of octadecyl-silica (C18) and of bonded pentafluorophenylpropyl-silica (F5) and PEG-silica columns was compared for natural phenolic antioxidants. The separation selectivities for phenolic antioxidants on C18 and F5 columns are strongly correlated, but low selectivity correlation indicating strong differences in the retention mechanism was observed between the C18 and PEG columns. Hence, the combination of a C18 and a PEG column is useful for separation of phenolic antioxidants that are not fully separated on single columns. Two-dimensional comprehensive liquid chromatography using a short PEG-silica column in the first dimension and a conventional C18-silica in the second dimension has the advantage of on-column focusing of the fractions transferred onto the C18 column in the second dimension, as a weaker mobile phase is used in the first dimension than in the second dimension. However, a stop-flow set-up in the first dimension system is necessary after the transfer of each fraction to the second dimension. Peak capacity is considerably larger but the separation time is much longer than with serially coupled PEG and C18 columns, which were employed for separation of beer and hop extract samples in connection with coulometric detection.  相似文献   

16.
二维液相色谱接口的改进及其在蛋白质组学研究中的应用   总被引:1,自引:0,他引:1  
李笃信  张凌怡  李彤  杜一平  张维冰 《色谱》2010,28(2):163-167
随着蛋白质组学、本草物质组学等组学概念的提出,所需分析的样品的成分越来越复杂,因此具有强大分离能力的多维液相色谱技术受到人们越来越多的关注。二维液相色谱中第二维的分离性能和速度是整个分离系统性能的关键。基于捕集柱模式,我们采用经特殊设计的流路系统,使得双捕集柱型接口具有预分离的功能。样品从第一维流出以后被富集在捕集柱1的柱头,经过脱盐后,正冲捕集柱,捕集柱1与第二维色谱柱联用对富集的样品进行分离,增加了第二维分离效率。当捕集柱上的样品全部被洗脱到第二维色谱柱上时,捕集柱2已经完成对第一维洗脱液中样品的捕集和脱盐,此时将阀进行切换,捕集柱2与第二维色谱柱直接相连进行洗脱。循环切换捕集柱1和捕集柱2,维持较高的阀切换频率,实现了第二维色谱柱的连续洗脱。因此保证了第二维分离具有较快速度,同时具有较高的分离效率。使用35 mm长捕集柱和十通阀为接口,以弱阴离子交换(WAX)色谱为第一维分离模式,以反相(RP)色谱为第二维分离模式,构建了WAX-RP二维液相色谱系统(2D-LC system)。以小鼠血清为样品对系统进行了初步评价。色谱流出曲线出现了明显的界面现象,这是由于捕集柱流动相中含有的较多盐分流出时的背景吸收造成的。同时,由于界面两侧的流动相黏度不同产生了黏性指进(VF)现象。当第二维色谱柱长度为50 mm时,理论上可将第二维分离效能提高70%。该接口可以应用于多种二维液相色谱模式,适用于蛋白质组学和本草物质组学研究中对于复杂样品的分离分析。  相似文献   

17.
Low‐temperature high‐performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at –35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low‐temperature high‐performance liquid chromatography at temperatures from –35 to –5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl‐silica (C18) column provided reversed phase mode separation, and a bare silica‐gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately –15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high‐performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns.  相似文献   

18.
An analytical method based on online enrichment using coupled-column liquid chromatography with fluorescence detection has been developed to determine marbofloxacin, ciprofloxacin, danofloxacin, enrofloxacin, norfloxacin, lomefloxacin, oxolinic acid, and nalidixic acid at trace levels in surface water. The sample containing the pharmaceuticals was pumped through a short C18 column in such a way that the analytes were retained on the column, whereas polar interferences, eluting at the first of the chromatogram, were discarded to waste. Then, the analytes were transferred by the chromatographic mobile phase to a second C18 analytical column, where they were separated following a conventional chromatography. The optimized approach allowed to preconcentrate 15 mL of sample volume adjusted at acid pH with phosphoric acid and modified with 5% of methanol, at a flow rate of 1.5 mL/min in 10 min. R(2) values were between 0.994 and 0.998, detection and quantitation limits ranged between 0.001 and 0.080 and between 0.002 and 0.100 μg/L, respectively, and the interday precision was below 9.8%. Recoveries in three different surface water samples, spiked at concentration levels between 0.002 and 0.500 μg/L (n = 3 for each spiking level), ranged from 82.1 to 125.8% with the relative standard deviation lower than 12%.  相似文献   

19.
The development of a two-dimensional liquid chromatographic system requires a process of assessment that can yield an optimum performing system with minimal experimental evaluation. Information Theory and a geometric approach to Factor Analysis are two techniques that when used in combination, provide important information on the expected two-dimensional performance. In the present study, we compare the predicted separation performance of two-dimensional systems that have been subjected to analysis by Information Theory and Factor Analysis to that of actual chromatographic separation performance. Our test separation comprised a mixture of 32 oligostyrene structural isomers and stereoisomers. The optimal combination as determined by Information Theory and Factor Analysis consisted of a C18 column with a methanol mobile phase in the first dimension and a carbon clad zirconia column with an acetonitrile mobile phase in the second dimension. This system was also shown to be the most successful practical system when a heart-cutting approach was employed. The practical results were in total agreement with the results from Information Theory and Factor Analysis. The number of isomers resolved using this system was 27. A second system, namely one comprising of a C18 column and methanol mobile phase in the first dimension and a carbon clad zirconia column with a methanol mobile phase in the second dimension was also predicted to be a system with high separation potential. However, practical assessment of this system did not realise the theoretical predictions, largely due to the long separation times required in the second dimension. Furthermore, all combinations that employed a C18 column with an acetonitrile mobile phase in the first dimension failed to realise the theoretical separation potential due to high solute crowding, low orthogonality and a disordered arrangement of bands along the first separation axis. This was also predicted by the theoretical assessment.  相似文献   

20.
Many samples contain compounds with various numbers of two or more regular structural groups. Such "multidimensional" samples (according to the Giddings' notation) are best separated in orthogonal chromatographic systems with different selectivities for the individual repeat structural groups, described by separation factors. Correlations between the repeat group selectivities characterize the degree of orthogonality and suitability of chromatographic systems for two-dimensional (2D) separations of two-dimensional samples. The range of the structural units in that can be resolved in a given time can be predicted on the basis of a model describing the repeat group selectivity in the first- and second-dimension systems. Two-dimensional liquid chromatographic system combining reversed-phase (RP) mode in the first dimension and normal-phase (NP) mode in the second dimension were studied with respect to the possibilities of in-line fraction transfer between the two modes. Hydrophilic interaction liquid chromatography (HILIC) with an aminopropyl silica column (APS) is more resistant than classical non-aqueous NP systems against adsorbent desactivation with aqueous solvents transferred in the fractions from the first, RP dimension to the second dimension. Hence, HILIC is useful as a second-dimension separation system for comprehensive RP-NP LCxLC. A comprehensive 2D RP-NP HPLC method was developed for comprehensive 2D separation of ethylene oxide-propylene oxide (EO-PO) (co)oligomers. The first-dimension RP system employed a 120 min gradient of acetonitrile in water on a C18 microbore column at the flow-rate of 10 microL/min. In the second dimension, isocratic HILIC NP with ethanol-dichloromethane-water mobile phase on an aminopropyl silica column at 0.5 mL/min was used. Ten microliter fractions were transferred from the RP to the HILIC NP system at 1 min switching valve cycle frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号