首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) has been successfully immobilized onto electrode through the electrodeposition of Ru(bpy)32+/AuNPs/chitosan composite film. In the experiments, chitosan solution was first mixed with Au nanoparticles (AuNPs) and Ru(bpy)32+. Then, during chronopotentiometry experiments in this mixed solution, a porous 3D network structured film containing Ru(bpy)32+, AuNPs and chitosan has been electrodeposited onto cathode due to the deposition of chitosan when pH value is over its pKa (6.3). The applied current density is crucial to the film thickness and the amount of the entrapped Ru(bpy)32+. Additionally, these doping Ru(bpy)32+ in the composite film maintained their intrinsic electrochemical and electrochemiluminescence activities. Consequently, this Ru(bpy)32+/AuNPs/chitosan modified electrode has been used in ECL to detect tripropylamine, and the detection limit was 5 × 10−10 M.  相似文献   

2.
Differential scanning calorimetry and high temperature oxide melt solution calorimetry are used to study enthalpy of phase transition and enthalpies of formation of Cu2P2O7 and Cu3(P2O6OH)2. α-Cu2P2O7 is reversibly transformed to β-Cu2P2O7 at 338–363 K with an enthalpy of phase transition of 0.15 ± 0.03 kJ mol−1. Enthalpies of formation from oxides of α-Cu2P2O7 and Cu3(P2O6OH)2 are −279.0 ± 1.4 kJ mol−1 and −538.8 ± 2.7 kJ mol−1, and their standard enthalpies of formation (enthalpy of formation from elements) are −2096.1 ± 4.3 kJ mol−1 and −4302.7 ± 6.7 kJ mol−1, respectively. The presence of hydrogen in diphosphate groups changes the geometry of Cu(II) and decreases acid–base interaction between oxide components in Cu3(P2O6OH)2, thus decreasing its thermodynamic stability.  相似文献   

3.
4.
The electrochemistry and electrochemiluminescence (ECL) of novel three-dimensional nanostructured Ru(bpy)32+/Ni(OH)2 microspheres were investigated for the first time. The negatively charged porous Ni(OH)2 microspheres composed of Ni(OH)2 nanowires were specifically designed to interact with Ru(bpy)32+. The large surface area and porous structure of Ni(OH)2 microspheres enhance loading of Ru(bpy)32+ and mass transport of the model analyte, tripropylamine (TPA). Excellent ECL performance of the presented sensor was achieved including good stability and wide linear range from 7.7 × 10−10 to 3.8 × 10−3 M with the detection limit of 2.6 × 10−10 M to TPA.  相似文献   

5.
Yali Li  Hui Zhu  Xiurong Yang 《Talanta》2009,80(2):870-2045
In order to solidify the electrochemiluminescence (ECL) luminophor tris(2,2′-bipyridyl) ruthenium(II) ([Ru(bpy)3]2+) onto the electrode surfaces robustly, the negative charged heteropolyacids (HPAs) moieties were utilized to attract and bond cations [Ru(bpy)3]2+ via an adsorption method. The compositions and microstructures of the hybrid complexes were characterized by elemental analysis (EDS), spectroscopic techniques (UV-vis, FTIR) and field-emission scanning electron microscopy (FE-SEM). The electrochemical and ECL behaviors of the [Ru(bpy)3]2+/[PW12O40]3− hybrid complex contained in the solid film of the nanocomposites formed on the electrode surfaces were also studied. It was found that the corresponding solid membranes exhibited a diffusion-controlled voltammetric feature and excellent electrochemiluminescence behaviors. Hence potential prospects as new electrochemiluminescent materials for application in electroanalytical detection are envisioned.  相似文献   

6.
La1−x(PO3)3:Tbx3+ (0<x0.6) were prepared using solid-state reaction. The vacuum ultraviolet (VUV) excitation spectrum of La0.55(PO3)3:Tb0.453+ indicates that the absorption of (PO3)33− groups locates at about 163 and 174 nm and the absorption bands of (PO3)33− groups (174 nm) and La3+–O2− (200 nm) and Tb3+ (213 nm) overlap each other. These results imply that the (PO3)33− groups can efficiently absorb the excited energy around 172 nm and transfer the energy to Tb3+. Under 172 nm excitation, the optimal photoluminescence (PL) intensity is obtained when Tb concentration reaches 0.45 and is about 71% of commercial phosphor Zn1.96SiO4:0.04 Mn2+ with chromaticity coordinates of (0.343, 0.578) and the decay time of about 4.47 ms.  相似文献   

7.
Fluorescein (HFin) emitted strong and stable room temperature phosphorescence (RTP) on filter paper after set at 50 °C for 10 min using Li+ as the ion perturber. HFin existed as Fin when the pH value was in the range of 5.45–7.36. Fin could react with [Cu(BPY)2]2+ (BPY: α,α-bipyridyl) to produce ion association complex [Cu(BPY)2]2+·[(Fin)2]2−, which could enhance the RTP signal of Hfin. In the presence of bovine serum albumin (BSA), the –COOH group of Fin in the [Cu(BPY)2]2+·[(Fin)2]2− could react with the –NH2 group of BSA to form the ion association complex [Cu(BPY)2]2+·[(Fin-BSA)2]2−, which contained –CO–NH– bond. This complex could sharply enhance the RTP signal of Hfin and the ΔIp was directly proportional to the content of BSA. According to the facts above, a new solid substrate-room temperature phosphorimetry (SS-RTP) for the determination of trace protein had been established using the ion association complex [Cu(BPY)2]2+·[(Fin)2]2−as a phosphorescent probe. This method had wide linear range (0.40 × 10−9–280 × 10−9 mg l−1), high sensitivity (the detection limit (LD) was 1.4 × 10−10 mg l−1), good precision (RSD: 3.4–4.9%) and high selectivity (the allowed concentration of coexistent ions or coexistent materials was high). It had been applied to the determination of the content of protein in 10 kinds of real samples, and the result agreed well with pyrocatechol violet-Mo (VI) method (P.V.M.M.), which indicated it had high accuracy. Meanwhile, reaction mechanism for the determination of trace protein with [Cu(BPY)2]2+·[(Fin)2]2− phosphorescent probe was also discussed. The academic thought of this research could not only be used to develop many kinds of ion association complex phosphorescent probes, but also provided a new way to promote the sensitivity of SS-RTP.  相似文献   

8.
Lei Qian  Xiurong Yang 《Talanta》2007,73(1):189-193
In this paper, we demonstrate an electrochemiluminescence (ECL) enhancement of tris(2,2-bipyridyl)ruthenium(II) (Ru(bpy)32+) by the addition of silver(I) ions. The maximum enhancement factor of about 5 was obtained on a glassy carbon electrode in the absence of co-reactant. The enhancement of ECL intensity was possibly attributed to the unique catalytic activity of Ag+ for reactions between Ru(bpy)33+ with OH. The higher enhancement was observed in phosphate buffer solutions compared with that from borate buffer solutions. This resulted from the fact that formation of nanoparticles with large surface area in the phosphate buffer solution exhibited high catalytic activity. The amount of Ag+, solution pH and working electrode materials played important roles for the ECL enhancement. We also studied the effects of Ag+ on Ru(bpy)32+/tripropylamine and Ru(bpy)32+/C2O42− ECL systems.  相似文献   

9.
Chirality effects have been observed in the intercalation, spectroscopic and photoelectrochemical behavior when enantiomeric and racemic [Ru(phen)3]2+ complexes were intercalated in the interlayer spaces of K4Nb6O17. The results were interpreted in terms of a [Nb6O17]4−-chelate and chelate–chelate interactions. The faster luminescence decay and higher photocurrent of the enantiomeric [Ru(phen)3]2+–K4Nb6O17 compounds than the racemic ones suggest that the emission of adsorbed [Ru(phen)3]2+ ions was not only quenched by adsorbed complexes (or concentration quenching) but also by the semiconductive host lattices.  相似文献   

10.
赵丽  陶颖  陈曦 《化学学报》2006,64(4):320-324
通过电化学循环伏安法和电致化学发光方法, 研究了Ru(bpy)32+在玻碳电极上的吸附, 研究结果表明, Ru(bpy)32+的浓度和与玻碳材料接触的时间, 直接影响了Ru(bpy)32+在玻碳上的吸附. 还考察了吸附的 在玻碳电极上被氧化后脱附的情况.  相似文献   

11.
Reaction of 2-(phenylazo)pyridine (pap) with [Ru(PPh3)3X2] (X = Cl, Br) in dichloromethane solution affords [Ru(PPh3)2(pap)X2]. These diamagnetic complexes exhibit a weakdd transition and two intense MLCT transitions in the visible region. In dichloromethane solution they display a one-electron reduction of pap near − 0.90 V vs SCE and a reversible ruthenium(II)-ruthenium(III) oxidation near 0.70 V vs SCE. The [RuIII(PPh3)2(pap)Cl2]+ complex cation, generated by coulometric oxidation of [Ru(PPh3)2(pap)Cl2], shows two intense LMCT transitions in the visible region. It oxidizes N,N-dimethylaniline and [RuII(bpy)2Cl2] (bpy = 2,2′-bipyridine) to produce N,N,N′,N′-tetramethylbenzidine and [RuIII(bpy)2Cl2]+ respectively. Reaction of [Ru(PPh3)2(pap)X2] with Ag+ in ethanol produces [Ru(PPh3)2(pap)(EtOH)2]2+ which upon further reaction with L (L = pap, bpy, acetylacetonate ion(acac) and oxalate ion (ox2−)) gives complexes of type [Ru(PPh3)2(pap)(L)]n+ (n = 0, 1, 2). All these diamagnetic complexes show a weakdd transition and several intense MLCT transitions in the visible region. The ruthenium(II)-ruthenium(III) oxidation potential decreases in the order (of L): pap > bpy > acac > ox2−. Reductions of the coordinated pap and bpy are also observed.  相似文献   

12.
Raman and FTIR spectra of guanidinium zinc sulphate [C(NH2)3]2Zn(SO4)2 are recorded and the spectral bands assignment is carried out in terms of the fundamental modes of vibration of the guanidinium cations and sulphate anions. The analysis of the spectrum reveals distorted SO42− tetrahedra with distinct S–O bonds. The distortion of the sulphate tetrahedra is attributed to Zn–O–S–O–Zn bridging in the structure as well as hydrogen bonding. The CN3 group is planar which is expressed in the twofold symmetry along the C–N (1) vector. Spectral studies also reveal the presence of hydrogen bonds in the sample. The vibrational frequencies of [C(NH2)3]2 and HC(NH2)3 are computed using Gaussian 03 with HF/6-31G* as basis set.  相似文献   

13.
In this paper, we describe the electrochemiluminescent (ECL) behavior of Ru(bpy)33+-incorporated clay colloids. Experimental results based on the electrochemical-quartz-crystal-microbalance (EQCM) techniques showed that Ru(bpy)33+ could be adsorbed by the clay colloids (montmorillonite K10, denoted K10). The resulting clay particles could emit light (λem 610 nm) when they were fabricated as thin films sandwiched by two conductive ITO electrodes with opposite biases. These Ru(bpy)33+-incorporated clay-modified electrodes could also emit light in aqueous oxalate solutions (pH 10) when potentials more positive than 0.9 V vs. SCE were applied. EDTA was an effective promoter for the Ru(bpy)3 (clay)3+-oxalate ECL reaction. The resulting ECL showed a remarkable sensitivity to oxygen. A glucose optrode was thus fabricated based on the Ru(bpy)33+-incorporated K10 colloids and glucose oxidase (GOx). The ECL signals behaved as a function of [glucose], covering a range from 0.1 to 10 mM at pH 10. The detection limits reached a level of 0.1 mM at this pH.  相似文献   

14.
Cu2+ binding on γ-Al2O3 is modulated by common electrolyte ions such as Mg2+, , and in a complex manner: (a) At high concentrations of electrolyte ions, Cu2+ uptake by γ-Al2O3 is inhibited. This is partially due to bulk ionic strength effects and, mostly, due to direct competition between Mg2+ and Cu2+ ions for the SO surface sites of γ-Al2O3. (b) At low concentrations of electrolyte ions, Cu2+ uptake by γ-Al2O3 can be enhanced. This is due to synergistic coadsorption of Cu2+ and electrolyte anions, and . This results in the formation of ternary surface species (SOH2SO4Cu)+, (SOH2PO4Cu), and (SOH2HPO4Cu)+ which enhance Cu2+ uptake at pH < 6. The effect of phosphate ions may be particularly strong resulting in a 100% Cu uptake by the oxide surface. (c) EPR spectroscopy shows that at pH  pHPZC, Cu2+ coordinates to one SO group. Phosphate anions form stronger, binary or ternary, surface species than sulfate anions. At pH  pHPZC Cu2+ may coordinate to two SO groups. At pH  pHPZC electrolyte ions and are bridging one O-atom from the γ-Al2O3 surface and one Cu2+ ion forming ternary [γ-Al2O3/elecrolyte/Cu2+] species.  相似文献   

15.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

16.
The objectives of this study were to address uncertainties in the solubility product of (UO2)3(PO4)2⋅4H2O(c) and in the phosphate complexes of U(VI), and more importantly to develop needed thermodynamic data for the Pu(VI)-phosphate system in order to ascertain the extent to which U(VI) and Pu(VI) behave in an analogous fashion. Thus studies were conducted on (UO2)3(PO4)2⋅4H2O(c) and (PuO2)3(PO4)2⋅4H2O(am) solubilities for long-equilibration periods (up to 870 days) in a wide range of pH values (2.5 to 10.5) at fixed phosphate concentrations of 0.001 and 0.01 M, and in a range of phosphate concentrations (0.0001–1.0 M) at fixed pH values of about 3.5. A combination of techniques (XRD, DTA/TG, XAS, and thermodynamic analyses) was used to characterize the reaction products. The U(VI)-phosphate data for the most part agree closely with thermodynamic data presented in Guillaumont et al.,(1) although we cannot verify the existence of several U(VI) hydrolyses and phosphate species and we find the reported value for formation constant of UO2PO4 is in error by more than two orders of magnitude. A comprehensive thermodynamic model for (PuO2)3(PO4)2⋅4H2O(am) solubility in the H+-Na+-OH-Cl-H2PO4-HPO2−4-PO3−4-H2O system, previously unavailable, is presented and the data shows that the U(VI)-phosphate system is an excellent analog for the Pu(VI)-phosphate system.  相似文献   

17.
Here, we describe a new approach for electrochemiluminescence (ECL) assay with Ru(bpy)32+-encapsulated silica nanoparticle (SiO2@Ru) as labels. A water-in-oil (W/O) microemulsion method was employed for one-pot synthesis of SiO2@Ru nanoparticles. The as-synthesized SiO2@Ru nanoparticles have a narrow size distribution, which allows reproducible loading of Ru(bpy)32+ inside the silica shell and of α-fetoprotein antibody (anti-AFP), a model antibody, on the silica surface with glutaraldehyde as linkage. The silica shell effectively prevents leakage of Ru(bpy)32+ into the aqueous solution due to strong electrostatic interaction between the positively charged Ru(bpy)32+ and the negatively charged surface of silica. The porous structure of silica shell allowed the ion to move easily through the pore to exchange energy/electrons with the entrapped Ru(bpy)32+. The as-synthesized SiO2@Ru can be used as a label for ultrasensitive detection of biomarkers through a sandwiched immunoassay process. The calibration range of AFP concentration was 0.05-30 ng mL−1 with linear relation from 0.05 to 20 ng mL−1 and a detection limit of 0.035 ng mL−1 at 3σ. The resulting immunosensors possess high sensitivity and good analytical performance.  相似文献   

18.
The reagent pentacyanoamminoferrate (PCAF) in its aqueous reactions with some common cations and anions produces colored species in solution. It has been observed that the reactions of Fe3+, Fe2+, Co2+, VO2+, Mo6+, S2O32−, and NO2 are sensitive enough to permit their colorimetric determinations. In addition, the reagent has been found useful in the simultaneous trace analysis of Fe3+ and VO2+ present in the same solution.A comparative study has been made of the reactions of PCAF and the other unsubstituted cyanoferrates(II) and (III).  相似文献   

19.
The FT IR and FT Raman spectra of Co(en)3Al3P4O16 · 3H2O (compound I) and [NH4]3[Co(NH3)6]3[Al2(PO4)4]2 · 2H2O (compound II) are recorded and analysed based on the vibrations of Co(en)33+, Co(NH3)63+, NH4+, Al---O---P, PO3, PO2 and H2O. The observed splitting of bands indicate that the site symmetry and correlation field effects are appreciable in both the compounds. In compound I, the overtone of CH2 deformation Fermi resonates with its symmetric stretching vibration. The NH4 ion in compound II is not free to rotate in the crystalline lattice. Hydrogen bonding of different groups is also discussed.  相似文献   

20.
Li Mao  Ruo Yuan  Yaqin Chai  Xia Yang 《Talanta》2010,80(5):1692-4551
An effective method for immobilization of Ru(bpy)32+ on glassy carbon electrode surface (GCE) is developed for the preparation of a novel electrochemiluminescence sensor. First of all, the positively charged Ru(bpy)32+ is modified on the surface of negatively charged gold nanoparticles (nano-Au) via the electrostatic interactions to obtain the Ru(bpy)32+/nano-Au nano-sphere (abbreviate as Ru-AuNPs). Subsequently, the large amount of Ru-AuNPs are immobilized on the multi-wall carbon nanotubes (MWCNTs)-Nafion homogeneous composite coated GCE by dual interaction: firstly, the Nafion, a kind of typical cation-exchange membrane, can absorb the Ru-AuNPs as the enrichment of cation Ru(bpy)32+ on the Ru-AuNPs surface; secondly, the employment of carboxylic MWCNTs in the Nafion film can also chemosorb the Ru(bpy)32+ cation on the Ru-AuNPs surface to increase the carrier content. At the same time, the experiment confirms that the enhancement of the ECL intensity on the sensor is attributed to following reasons. One hand, the employment of MWCNTs in the Nafion film enlarged the electro-active surface areas to benefit the contact between the signal probe on the composite film and coreactant used as reinforcing agent. On the other hand, the nano-materials of MWCNTs and nano-Au also improve the conductivity of the assembled film to increase the quantity of excited state of Ru(bpy)32+ in the unit time under the electrochemical condition and finally cause better properties in luminescence. In the experiment, the influence of the coreactant tripropylamine (TPA) on proposed ECL sensor is investigated. The logarithm of ECL intensity is proportional to the logarithm of TPA concentration on the range of 4 × 10−10 M to 2.8 × 10−6 M and 2.8 × 10−6 M to 0.71 × 10−3 M. After optimizing these conditions, the ECL sensor with TPA as coreactant is employed to detect a kind of alkaloid medicine, Matrine, for evaluating the practical application in the medicine analysis. The present sensor with TPA as coreactant shows the good response to the medicine concentration of the Matrine from 2.0 × 10−6 M to 6.0 × 10−3 M, which is used to detect the Matrine concentration in the Matrine injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号