首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The EPR spectra of scandium acceptors and Sc2+(3d) ions are observed in 6H-SiC crystals containing a scandium impurity. The EPR spectra of scandium acceptors are characterized by comparatively small hyperfine interaction constants, whose values are consistent with the constants for other group III elements in SiC: boron, aluminum, and gallium acceptors. The EPR spectra of scandium acceptors undergo major changes in the temperature interval 20–30 K. In the low-temperature phase the EPR spectra are characterized by orthorhombic symmetry, whereas the high-temperature phase has higher axial symmetry. The EPR spectra observed at temperatures above 35 K and ascribed by the authors to Sc2+(3d) ions, or to the A 2− state of scandium, have significantly larger hyperfine structure constants and narrower lines in comparison with the EPR spectra of scandium acceptors. The parameters of these EPR spectra are close to those of Sc2+(3d) in ionic crystals and ZnS, whereas the parameters of the EPR spectra of scandium acceptors correspond more closely to the parameters of holes localized at group III atoms, in particular, at scandium atoms in GeO2. It is concluded that in all centers the scandium atoms occupy silicon sites. Fiz. Tverd. Tela (St. Petersburg) 39, 52–57 (January 1997)  相似文献   

2.
In order to develop reference low-energy monoenergetic neutron fields, the 45Sc(p,n) reaction is being studied within the framework of a scientific cooperation between NPL, PTB, IRMM and IRSN. The first study is dedicated to the selection of the most suitable backing material for scandium targets. It must be able to sustain high proton beam currents to compensate for the low cross section of the 45Sc(p,n) reaction. Targets with backings made of Mo, Al, W, Ag, Pt and Ta were irradiated during several hours at a few tens of μA at the NPL neutron reference facility. Target thickness and composition were analysed with the RBS method at the AIFIRA facility before and after NPL irradiations leading to the selection of tantalum as the best choice for backing material.  相似文献   

3.
The electric field gradients (EFG) for ruthenium in scandium and yttrium metal were determined by TDPAC measurements to be 19(4) × 1017 V/cm2 and 5.5(12) × 1017 V/cm2 respectively at room temperature. The EFG for Ru in Sc was found to vary considerably in the temperature range from 14 to 700 K, whereas for Ru in Y only an extremely small temperature dependence of the EFG was observed.  相似文献   

4.
Thin iron oxide layers prepared “in situ” in the ultra high vacuum on polycrystalline iron substrate were investigated by electron spectroscopy methods—X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES), using spectrometer ADES-400. The texture and the average grain size of the iron substrate foil have been examined by glancing angle X-ray diffraction (XRD). Qualitative and quantitative estimation of investigated oxide layers was made using (i) the relative sensitivity factor XPS method, (ii) comparison of binding energy shifts of Fe 2p photoelectron line and (iii) non-linear fitting procedure of Fe 2p photoelectron lines.Both, sputter-clean polycrystalline iron substrate and finally grown Fe2.2O3 layer, were investigated by the EPES method to measure the electron transport parameters used for quantitative electron spectroscopy, such as the electron inelastic mean free path (IMFP) values. The IMFPs were measured in the electron kinetic energy range 200-1000 eV with the Cu standard. The surface excitation parameters using Chen and Werner et al. approaches were evaluated and applied for correcting these IMFPs. The discrepancies between the evaluated parameters obtained using the above quantitative and qualitative approaches for characterising the iron oxide layers were discussed.  相似文献   

5.
Dihydroxylation of styrene by chlorite (ClO2?) with scandium triflate [Sc(OTf)3] occurs efficiently to produce 1‐phenylethane‐1,2‐diol under the ambient conditions. Scandium triflate acting as a strong Lewis acid is found to accelerate the disproportionation of ClO2? to produce ClO? and ClO3?. A scandium‐chlorine dioxide complex (Sc3+ClO2?) is generated by the reaction of ClO? with ClO2? in the presence of Sc3+. The binding of Sc3+ to ClO2? was detected by the electron paramagnetic resonance measurements, enhancing the reactivity and selectivity of styrene hydroxylation.  相似文献   

6.
彭述明  申华海  龙兴贵  周晓松  杨莉  祖小涛 《物理学报》2012,61(17):176106-176106
采用XRD, SEM, AFM等详细研究了氘化及氦离子注入对钪膜的表面形貌和相结构的影响. 结果表明,在单晶硅及抛光Mo基片上制备的钪膜均具有(002)晶面择优取向;钪膜氘化后表面会出现大量孔洞, 氘化后氘化钪(ScD2)晶粒长大,但内部会残留少量未完全氘化反应的晶粒尺寸较小的 ScD0.33/Sc晶粒;氦离子注入对钪及氘化钪的表面形貌没有明显影响, 离子注入的氦将在钪及氘化钪晶格中聚集成泡,导致氦离子注入层中的钪及氘化钪衍射峰向低角度偏移, 并且氦泡的聚集具有择优取向性.  相似文献   

7.
An angle-dependent X-ray photoelectron spectroscopy (XPS) method used to measure the thickness of molecularly thin lubricants was developed. The method was built based on an island model of patched overlayer on a flat substrate by using the photoemission signal solely from the lubricant film. Typical molecularly thin Zdol films on the CHx overcoat of unused commercial magnetic disks were measured to verify the metrology. The lubricant thickness determined by the metrology was equal to the recent result by thermostatic high vacuum atomic force microscopy. The measured deduction in the thickness of the molecularly thin lubricant films, successively irradiated by the monochromatic source operated at 14 kV/250 W, was as low as 1 ? during the first irradiation hour. XPS spectra showed that no hydrocarbons, water or oxygen were adsorbed over the Zdol outer surfaces in the tested XPS conditions. The inelastic mean free path (IMFP) of C 1s in Zdol or in CHx was found to be independent of take off angle (TOA) when TOA < 40°. The IMFP of C 1s in Zdol was ∼63.5 ? and the lubricant island thickness was ∼35 ?.  相似文献   

8.
Local structure around Sc in BaZr1  xScxO3 − δ protonic conductor has been investigated by 45Sc MAS-NMR. The MAS-NMR spectra were consisted of several peaks, which can be assigned to Sc in different coordination environment. Compositional dependence of the spectrum was observed. The coordination environment of Sc is determined from the peak deconvolution, and the oxygen vacancy concentration and the protonic defect concentration around Sc were obtained. The present investigation suggests that oxygen vacancies preferentially located around Sc and the concentration of oxygen vacancies in the vicinity of Sc increases with increasing the Sc content. Protonic defects were found to be preferentially located around Sc at lower Sc content.  相似文献   

9.
Samples of the iron oxides Fe0.94O, Fe3O4, Fe2O3, and Fe2SiO4 were prepared by high temperature equilibration in controlled gas atmospheres. The samples were fractured in vacuum and high resolution XPS spectra of the fractured surfaces were measured. The peak positions and peak shape parameters of Fe 3p for Fe2+ and Fe3+ were derived from the Fe 3p XPS spectra of the standard samples of 2FeO·SiO2 and Fe2O3, respectively. Using these parameters, the Fe 3p peaks of Fe3O4 and Fe1−yO are analysed. The results indicate that high resolution XPS techniques can be used to determine the Fe2+/Fe3+ ratios in metal oxides. The technique has the potential for application to other transition metal oxide systems.  相似文献   

10.
The systematics of the excitation energies of the non-normal parity states of the scandium isotopes are interpreted in terms of the formation of a quartet of 1f7/2 nucleons. Calculation of theB(E2) value for a typical radiative transition between non-normal parity states in43Sc, using this model, shows that the transition must involve more than the single quartet formed in the 1f7/2 shell; that is, that core polarization is an important factor in determining theB(E2) value.  相似文献   

11.
At first, X-ray photoelectron spectroscopy (XPS) analyses of reference and carbon dioxide plasma treated polyethylene terephthalate (PET) were carried out. Significant chemical modifications were outlined in the treated PET surface in comparison with the reference one. The formation of new oxygenated groups was evidenced. These modifications heighten the level of interactions between the polymer substrate and the deposited coating.In a second stage, zinc oxide thin films were elaborated by r.f. magnetron sputtering from a ceramic target and with a reactive gas (mixture of argon-1% oxygen) under optimised conditions on CO2 plasma treated PET. The interfacial chemistry between the plasma treated PET and the zinc oxide was also studied by XPS. The line shape changes in the high-resolution core level spectra of carbon C1s, oxygen O1s, and zinc (Zn2p3/2, Zn3p), with the progressive deposition of zinc oxide coatings being recorded. The obtained spectra were fitted to mixed Gaussian-Lorentzian components using XPS CASA software.An interaction scheme between the zinc oxide thin layer and its polymer substrate, in the first stage of deposition, was proposed and checked by corroborating the findings of the different XPS spectra and their decompositions. It suggests the formation of ZnOC complexes at the interface, which are promoted by an electron transfer from zinc to oxygen in oxygenated species, mainly alcohol groups, generated by the CO2 plasma treatment of PET.  相似文献   

12.
X-ray photoelectron spectroscopy (XPS) was used to study the properties of passive oxide film that form on carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties. The thickness of the oxide films was determined to be approximately 4 nm and was not affected by the exposure time. Near the film/substrate interface the concentration of the Fe2+ oxides was higher than the concentration of the Fe3+ oxides; the layers near the free surface of the film mostly contained Fe3+ oxides. Chloride exposure decreased the thickness of the oxide films and changed their stoichiometry such that near the film/substrate interface Fe3+/Fe2+ ratio increased.  相似文献   

13.
Novel volatile cyclooctatetraenyl-pentamethylcyclopentadienyl sandwich complexes have been used as precursors to deposit thin yttrium and rare earth oxide films by means of PECVD. These compounds form pure oxide films in plasmas of argon/oxygen or argon/water-vapour, in nitrous oxide, and carbon dioxide at substrate temperatures of 350–400° C and power densities of 1.0–1.5 W/cm2.The films were characterized by metal analysis, carbon analysis, XPS, CTEM electron diffraction, SEM micrographs, and FTIR spectra.  相似文献   

14.
Highly oriented VO2(B), VO2(B) + V6O13 films were grown on indium tin oxide glass by radio-frequency magnetron sputtering. Single phase V6O13 films were obtained from VO2(B) +V6O13 films by annealing at 480℃ in vacuum. The vanadium oxide films were characterized by x-ray diffraction and x-ray photoelectron spectra (XPS). It was found that the formation of vanadium oxide films was affected by substrate temperature and annealing time, because high substrate temperature and annealing were favourable to further oxidation. Therefore, the formation of high valance vanadium oxide films was realized. The V6O13 crystalline sizes become smaller with the increase of annealing time. XPS analysis revealed that the energy position for all the samples was almost constant, but the broadening of the V2p3/2 line of the annealed sample was due to the smaller crystal size of V6O13.  相似文献   

15.
Highly transparent and conductive scandium doped zinc oxide (ZnO:Sc) films were deposited on c-plane sapphire substrates by sol–gel technique using zinc acetate dihydrate [Zn(CH3COO)2·2H2O] as precursor, 2-methoxyethanol as solvent and monoethanolamine as a stabilizer. The doping with scandium is achieved by adding 0.5 wt% of scandium nitrate hexahydrate [(ScNO3·6H2O)] in the solution. The influence of annealing temperature (300–550 °C) on the structural, optical and electrical properties was investigated. X-ray Diffraction study revealed that highly c-axis oriented films with full-width half maximum of 0.16° are obtained at an annealing temperature of 400 °C. The surface morphology of the films was judged by SEM and AFM images which indicated formation of grains. The average transmittance was found to be above 92% in the visible region. ZnO:Sc film, annealed at 400 °C exhibited minimum resistivity of 1.91 × 10−4 Ω cm. Room-temperature photoluminescence measurements of the ZnO:Sc films annealed at 400 °C showed ultraviolet peak at 3.31eV with a FWHM of 11.2 meV, which are comparable to those found in high-quality ZnO films. Reflection high-energy electron diffraction pattern confirmed the epitaxial nature of the films even without introducing any buffer layer.  相似文献   

16.
The inelastic mean free path (IMFP) of electrons is an important material parameter needed for quantitative AES, EELS and non-destructive depth profiling. The distinction between the terms for IMFP and the attenuation length (AL) has been established by ASTM standards. A practical experimental method for determining values of the IMFP is elastic peak electron spectroscopy (EPES). In this method, experimentally determined ratios of elastically backscattered electrons from test surfaces and from a Ni reference standard are compared with the values evaluated theoretically.The present paper reports systematic measurements of the IMFP by EPES for GaAs and InP. They are carried out in two laboratories using two different electron spectrometers: a CMA in Budapest and DCMA in Warsaw. Prior to measurements, the samples were amorphized by high-energy Ar+ ions (100–400 keV), and the surface composition was determined by quantitative XPS. Argon cleaning produces enrichment of samples in the surface layer in Ga (80%) and In (70%), respectively. The experiments refer to a such modified sample surface that was considered in Monte Carlo calculations. The experimental data were analyzed using calibration curves from Monte Carlo calculations which account for multiple elastic scattering events. This approach has been used previously for elemental solids and is now extended to amorphized binary compounds. The experimental values of IMFP obtained in both laboratories exhibited a reasonable agreement with the available literature data in the 0.1–3.0 keV energy range. With respect to the information depth of EPES, the experimental results refer to the bulk composition within a reasonable extent.  相似文献   

17.
The high resolution Mn and Fe Kα X-ray emission spectra (XES), and Mn and Fe 2p X-ray photoelectron spectra (XPS) for manganese and iron oxides were measured. The spectra were compared with those of [MnO4], [Fe(CN)6]4− and [Fe(CN)6]3− ions. As the electronic structure of the latter compounds do not change with electron hole creation in the core levels, satellite peaks due to charge transfer are not observed in the 2p XPS spectra, and the peak profiles of metal 2p XPS and Kα XES are governed by the exchange splitting between 2p and valence electrons. The metal 2p XPS spectra of the oxides had satellite peaks, but the XES spectra had no satellites. FWHMs of the metal 2p3/2 main peaks of the compounds being low spin states are smaller than those of metal Kα1 XES spectra. However, FWHMs of Mn 2p3/2 of the manganese oxide were nearly equal to those of Mn Kα1 XES spectra, and those of Fe 2p3/2 XPS spectra of the iron oxides are greater than those of Fe Kα1 XES spectra.  相似文献   

18.
Electric field gradient (EFG) in scandium metal has been evaluated at temperatures 11 K and 293 K using band wave functions determined in the temperature dependent model potentials. The results of net EFG obtained are −3.756×1013 esu/cm3 and −8.009×1013esu/cm3 at 11 K and 293 K respectively. The agreement with available experimental result is reasonably good.  相似文献   

19.
Trace amounts of trivalent vanadium in zinc oxide single crystals can be converted into divalent ions by heating the samples in an atmosphere of zinc vapor. The ESR spectra of V2+ have been investigated at low temperature and the parameters of the spin-Hamiltonian were determined by making use of a computer program. The parameter values for V3+ have been refined. The ions are assumed to be at substitutional Zn2+ sites.  相似文献   

20.
Nanostructured copper (II) oxide was formed on clean copper foil at room temperature using activated oxygen produced by RF discharge. CuO particles of approximately 10-20 nm were observed on the surface by Scanning Tunneling Microscopy (STM). The copper states and oxygen species of the model cupric oxide were studied by means of X-ray Photoelectron Spectroscopy (XPS). These oxide particles demonstrated abnormally high reactivity with carbon monoxide (CO) at temperatures below 100 °C. The XPS data showed that the interaction of CO with the nanostructured cupric oxide resulted in reduction of the CuO particles to Cu2O species. The reactivity of the nanostructured cupric oxide to CO was studied at 80 °C using XPS in step-by-step mode. The initial reactivity was estimated to be 5 × 10−5 and was steadily reduced down to 5 × 10−9 as the exposure was increased. O1s spectral analysis allowed us to propose that the high initial reactivity was caused by the presence of non-lattice oxygen states on the surface of the nanostructured CuO. We established that reoxidation of the partially reduced nanostructured cupric oxide by molecular oxygen O2 restored the highly reactive oxygen form on the surface. These results allowed us to propose that the nanostructured cupric oxide could be used for low temperature catalytic CO oxidation. Some hypotheses concerning the nature of the non-lattice oxygen species with high reactivity are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号