首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A practical algorithm is developed for automated mesh design in finite element stress analysis. A regional mixed mesh improvement procedure is introduced. The error control, algorithm implementation, code development, and the solution accuracy are discussed. Numerical examples include automated mesh designs for plane elastic media with singularities. The efficiency of the procedure is demonstrated.  相似文献   

2.
In this paper, we propose an anisotropic adaptive refinement algorithm based on the finite element methods for the numerical solution of partial differential equations. In 2-D, for a given triangular grid and finite element approximating space V, we obtain information on location and direction of refinement by estimating the reduction of the error if a single degree of freedom is added to V. For our model problem the algorithm fits highly stretched triangles along an interior layer, reducing the number of degrees of freedom that a standard h-type isotropic refinement algorithm would use.  相似文献   

3.
In this paper, we analyze the convergence of the adaptive conforming P 1 element method with the red-green refinement. Since the mesh after refining is not nested into the one before, the Galerkin-orthogonality does not hold for this case. To overcome such a difficulty, we prove some quasi-orthogonality instead under some mild condition on the initial mesh (Condition A). Consequently, we show convergence of the adaptive method by establishing the reduction of some total error. To weaken the condition on the...  相似文献   

4.
We have investigated and analyzed the grid convergence issues for an adaptive mesh refinement (AMR) code. We have found that the numerical results for the AMR grid may have a larger error than those for the unrefined uniform grid. After a detailed analysis, we have found that the numerical solution at the coarse-fine interface between different levels of the grid converges only in the first-order accuracy. Therefore, the error near the coarse-fine interface can quickly dominate the error in the other regions if the coarse-fine interface is active and not covered by the fine grid. We propose, implement, and compare several refinement criteria. Some of them can catch the large-error region near the coarse-fine interface and refine them with the fine grid.  相似文献   

5.
Numerical Algorithms - The indirect solution of optimal control problems (OCPs) with inequality constraints and parameters is obtained by solving the two-point boundary value problem (BVP)...  相似文献   

6.
7.
Adaptive strategies are a necessary tool to make finite element analysis applicable to engineering practice. In this paper, attention is restricted to mesh adaptivity. Traditionally, the most common mesh adaptive strategies for linear problems are used to reach a prescribed accuracy. This goal is best met with an h-adaptive scheme in combination with an error estimator. In an industrial context, the aim of the mechanical simulations in engineering design is not only to obtain greatest quality but more often a compromise between the desired quality and the computation cost (CPU time, storage, software, competence, human cost, computer used). In this paper, we propose the use of alternative mesh refinement criteria with an h-adaptive procedure for 3D elastic problems. The alternative mesh refinement criteria (MR) are based on: prescribed number of elements with maximum accuracy, prescribed CPU time with maximum accuracy and prescribed memory size with maximum accuracy. These adaptive strategies are based on a technique of error in constitutive relation (the process could be used with other error estimators) and an efficient adaptive technique which automatically takes into account the steep gradient areas. This work proposes a 3D method of adaptivity with the latest version of the INRIA automatic mesh generator GAMHIC3D.  相似文献   

8.
Accurate numerical computation of complex flows on a single grid requires very fine meshes to capture phenomena occurring at both large and small scales. The use of adaptive mesh refinement (AMR) methods, significantly reduces the involved computational time and memory. In the present article, a hybrid linking approach for solving the conservation equations with an AMR method is proposed. This method is essentially a coupling between the h-AMR and the multigrid methods. The efficiency of the present approach has been demonstrated by solving species and Navier–Stokes equations.  相似文献   

9.
We propose a novel approach to adaptivity in FEM based on local sensitivities for topological mesh changes. To this end, we consider refinement as a continuous operation on the edge graph of the finite element discretization, for instance by splitting nodes along edges and expanding edges to elements. Thereby, we introduce the concept of a topological mesh derivative for a given objective function that depends on the discrete solution of the underlying PDE. These sensitivities may in turn be used as refinement indicators within an adaptive algorithm. For their calculation, we rely on the first-order asymptotic expansion of the Galerkin solution with respect to the topological mesh change. As a proof of concept, we consider the total potential energy of a linear symmetric second-order elliptic PDE, minimization of which is known to decrease the approximation error in the energy norm. In this case, our approach yields local sensitivities that are closely related to the reduction of the energy error upon refinement and may therefore be used as refinement indicators in an adaptive algorithm. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The finite element methodology has become a standard framework for approximating the solution to the Poisson-Boltzmann equation in many biological applications. In this article, we examine the numerical efficacy of least-squares finite element methods for the linearized form of the equations. In particular, we highlight the utility of a first-order form, noting optimality, control of the flux variables, and flexibility in the formulation, including the choice of elements. We explore the impact of weighting and the choice of elements on conditioning and adaptive refinement. In a series of numerical experiments, we compare the finite element methods when applied to the problem of computing the solvation free energy for realistic molecules of varying size.  相似文献   

11.
The optimal design problem for maximal torsion stiffness of an infinite bar of given geometry and unknown distribution of two materials of prescribed amounts is one model example in topology optimisation. It eventually leads to a degenerate convex minimisation problem. The numerical analysis is therefore delicate for possibly multiple primal variables u but unique derivatives σ : = DW(D u). Even fine a posteriori error estimates still suffer from the reliability-efficiency gap. However, it motivates a simple edge-based adaptive mesh-refining algorithm (AFEM) that is not a priori guaranteed to refine everywhere. Its convergence proof is therefore based on energy estimates and some refined convexity control. Numerical experiments illustrate even nearly optimal convergence rates of the proposed AFEM. Supported by the DFG Research Center MATHEON “Mathematics for key technologies” in Berlin.  相似文献   

12.
Summary. In some applications, the accuracy of the numerical solution of an elliptic problem needs to be increased only in certain parts of the domain. In this paper, local refinement is introduced for an overlapping additive Schwarz algorithm for the $-version finite element method. Both uniform and variable degree refinements are considered. The resulting algorithm is highly parallel and scalable. In two and three dimensions, we prove an optimal bound for the condition number of the iteration operator under certain hypotheses on the refinement region. This bound is independent of the degree $, the number of subdomains $ and the mesh size $. In the general two dimensional case, we prove an almost optimal bound with polylogarithmic growth in $. Received February 20, 1993 / Revised version received January 20, 1994  相似文献   

13.
Summary. In this paper we consider additive Schwarz-type iteration methods for saddle point problems as smoothers in a multigrid method. Each iteration step of the additive Schwarz method requires the solutions of several small local saddle point problems. This method can be viewed as an additive version of a (multiplicative) Vanka-type iteration, well-known as a smoother for multigrid methods in computational fluid dynamics. It is shown that, under suitable conditions, the iteration can be interpreted as a symmetric inexact Uzawa method. In the case of symmetric saddle point problems the smoothing property, an important part in a multigrid convergence proof, is analyzed for symmetric inexact Uzawa methods including the special case of the additive Schwarz-type iterations. As an example the theory is applied to the Crouzeix-Raviart mixed finite element for the Stokes equations and some numerical experiments are presented. Mathematics Subject Classification (1991):65N22, 65F10, 65N30Supported by the Austrian Science Foundation (FWF) under the grant SFB F013}\and Walter Zulehner  相似文献   

14.
In this work, we derive a posteriori error estimates for discontinuous Galerkin finite element method on polytopal mesh. We construct a reliable and efficient a posteriori error estimator on general polygonal or polyhedral meshes. An adaptive algorithm based on the error estimator and DG method is proposed to solve a variety of test problems. Numerical experiments are performed to illustrate the effectiveness of the algorithm.  相似文献   

15.
We consider a model time-dependent convection-diffusion problem, whose solution may exhibit interior and boundary layers. The standard streamline diffusion scheme, with piecewise linear elements on a uniform mesh, will converge only at points that are not close to any layer. We replace the uniform mesh by a special piecewise uniform mesh that is chosen a priori and resolves part of any outflow boundary layer. The resulting method is convergent, independently of the diffusion parameter, with a pointwise accuracy of almost order 5/4 away from layers and almost order 3/4 inside the boundary layer.  相似文献   

16.
A parallel solver for the adaptive finite element analysis is presented. The primary aim of this work has been to establish an efficient parallel computational procedure which requires only local computations to update the solution of the system of equations arising from the finite element discretization after a local mesh-adaptation step. For this reason a set of algorithms has been developed (two-level domain decomposition, recursive hierarchical mesh-refinement, selective solution-update of linear systems of equations) which operate upon general and easily available partitioning, meshing and linear systems solving algorithms. AMS subject classification 15A23, 65N50, 65N60  相似文献   

17.
18.
We consider the task of resolving accurately the nnth eigenpair of a generalized eigenproblem rooted in some elliptic partial differential equation (PDE), using an adaptive finite element method (FEM). Conventional adaptive FEM algorithms call a generalized eigensolver after each mesh refinement step. This is not practical in our situation since the generalized eigensolver needs to calculate nn eigenpairs after each mesh refinement step, it can switch the order of eigenpairs, and for repeated eigenvalues it can return an arbitrary linear combination of eigenfunctions from the corresponding eigenspace. In order to circumvent these problems, we propose a novel adaptive algorithm that only calls a generalized eigensolver once at the beginning of the computation, and then employs an iterative method to pursue a selected eigenvalue–eigenfunction pair on a sequence of locally refined meshes. Both Picard’s and Newton’s variants of the iterative method are presented. The underlying partial differential equation (PDE) is discretized with higher-order finite elements (hphp-FEM) but the algorithm also works for standard low-order FEM. The method is described and accompanied with theoretical analysis and numerical examples. Instructions on how to reproduce the results are provided.  相似文献   

19.
We prove convergence and optimal complexity of an adaptive mixed finite element algorithm, based on the lowest-order Raviart–Thomas finite element space. In each step of the algorithm, the local refinement is either performed using simple edge residuals or a data oscillation term, depending on an adaptive marking strategy. The inexact solution of the discrete system is controlled by an adaptive stopping criterion related to the estimator.  相似文献   

20.
We introduce a nonconforming finite element formulation of asecond-order elliptic problem in the plane. The problem is posedon a domain which is partitioned into disjoint subregions andthe discrete problem is based on an independent triangulationby subregion. We use an integral matching condition at the interfaces.We prove quasi-optimal error estimates and propose an iterativesubstructuring algorithm to solve the system of linear equationsrelated to our discrete problem. The algorithm and its convergenceanalysis rely on an abstract framework of the additive Schwarzmethod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号