首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The complex and changeable marine environment surrounded by a variety of noise, including sounds of marine animals, industrial noise, traffic noise and the noise formed by molecular movement, not only interferes with the normal life of residents near the port, but also exerts a significant influence on feature extraction of ship-radiated noise (S-RN). In this paper, a novel feature extraction technique for S-RN signals based on optimized variational mode decomposition (OVMD), permutation entropy (PE), and normalized Spearman correlation coefficient (NSCC) is proposed. Firstly, with the mode number determined by reverse weighted permutation entropy (RWPE), OVMD decomposes the target signal into a set of intrinsic mode functions (IMFs). The PE of all the IMFs and SCC between each IMF with the raw signal are then calculated, respectively. Subsequently, feature parameters are extracted through the sum of PE weighted by NSCC for the IMFs. Lastly, the obtained feature vectors are input into the support vector machine multi-class classifier (SVM) to discriminate various types of ships. Experimental results indicate that five kinds of S-RN samples can be accurately identified with a recognition rate of 94% by the proposed scheme, which is higher than other previously published methods. Hence, the proposed method is more advantageous in practical applications.  相似文献   

2.
Ship-radiated noise is one of the important signal types under the complex ocean background, which can well reflect physical properties of ships. As one of the valid measures to characterize the complexity of ship-radiated noise, permutation entropy (PE) has the advantages of high efficiency and simple calculation. However, PE has the problems of missing amplitude information and single scale. To address the two drawbacks, refined composite multi-scale reverse weighted PE (RCMRWPE), as a novel measurement technology of describing the signal complexity, is put forward based on refined composite multi-scale processing (RCMP) and reverse weighted PE (RWPE). RCMP is an improved method of coarse-graining, which not only solves the problem of single scale, but also improves the stability of traditional coarse-graining; RWPE has been proposed more recently, and has better inter-class separability and robustness performance to noise than PE, weighted PE (WPE), and reverse PE (RPE). Additionally, a feature extraction scheme of ship-radiated noise is proposed based on RCMRWPE, furthermore, RCMRWPE is combined with discriminant analysis classifier (DAC) to form a new classification method. After that, a large number of comparative experiments of feature extraction schemes and classification methods with two artificial random signals and six ship-radiated noise are carried out, which show that the proposed feature extraction scheme has better performance in distinguishing ability and stability than the other three similar feature extraction schemes based on multi-scale PE (MPE), multi-scale WPE (MWPE), and multi-scale RPE (MRPE), and the proposed classification method also has the highest recognition rate.  相似文献   

3.
When rolling bearings have a local fault, the real bearing vibration signal related to the local fault is characterized by the properties of nonlinear and nonstationary. To extract the useful fault features from the collected nonlinear and nonstationary bearing vibration signals and improve diagnostic accuracy, this paper proposes a new bearing fault diagnosis method based on parameter adaptive variational mode extraction (PAVME) and multiscale envelope dispersion entropy (MEDE). Firstly, a new method hailed as parameter adaptive variational mode extraction (PAVME) is presented to process the collected original bearing vibration signal and obtain the frequency components related to bearing faults, where its two important parameters (i.e., the penalty factor and mode center-frequency) are automatically determined by whale optimization algorithm. Subsequently, based on the processed bearing vibration signal, an effective complexity evaluation approach named multiscale envelope dispersion entropy (MEDE) is calculated for conducting bearing fault feature extraction. Finally, the extracted fault features are fed into the k-nearest neighbor (KNN) to automatically identify different health conditions of rolling bearing. Case studies and contrastive analysis are performed to validate the effectiveness and superiority of the proposed method. Experimental results show that the proposed method can not only effectively extract bearing fault features, but also obtain a high identification accuracy for bearing fault patterns under single or variable speed.  相似文献   

4.
The prevalence of neurodegenerative diseases (NDD) has grown rapidly in recent years and NDD screening receives much attention. NDD could cause gait abnormalities so that to screen NDD using gait signal is feasible. The research aim of this study is to develop an NDD classification algorithm via gait force (GF) using multiscale sample entropy (MSE) and machine learning models. The Physionet NDD gait database is utilized to validate the proposed algorithm. In the preprocessing stage of the proposed algorithm, new signals were generated by taking one and two times of differential on GF and are divided into various time windows (10/20/30/60-sec). In feature extraction, the GF signal is used to calculate statistical and MSE values. Owing to the imbalanced nature of the Physionet NDD gait database, the synthetic minority oversampling technique (SMOTE) was used to rebalance data of each class. Support vector machine (SVM) and k-nearest neighbors (KNN) were used as the classifiers. The best classification accuracies for the healthy controls (HC) vs. Parkinson’s disease (PD), HC vs. Huntington’s disease (HD), HC vs. amyotrophic lateral sclerosis (ALS), PD vs. HD, PD vs. ALS, HD vs. ALS, HC vs. PD vs. HD vs. ALS, were 99.90%, 99.80%, 100%, 99.75%, 99.90%, 99.55%, and 99.68% under 10-sec time window with KNN. This study successfully developed an NDD gait classification based on MSE and machine learning classifiers.  相似文献   

5.
As a powerful tool for measuring complexity and randomness, multivariate multi-scale permutation entropy (MMPE) has been widely applied to the feature representation and extraction of multi-channel signals. However, MMPE still has some intrinsic shortcomings that exist in the coarse-grained procedure, and it lacks the precise estimation of entropy value. To address these issues, in this paper a novel non-linear dynamic method named composite multivariate multi-scale permutation entropy (CMMPE) is proposed, for optimizing insufficient coarse-grained process in MMPE, and thus to avoid the loss of information. The simulated signals are used to verify the validity of CMMPE by comparing it with the often-used MMPE method. An intelligent fault diagnosis method is then put forward on the basis of CMMPE, Laplacian score (LS), and bat optimization algorithm-based support vector machine (BA-SVM). Finally, the proposed fault diagnosis method is utilized to analyze the test data of rolling bearings and is then compared with the MMPE, multivariate multi-scale multiscale entropy (MMFE), and multi-scale permutation entropy (MPE) based fault diagnosis methods. The results indicate that the proposed fault diagnosis method of rolling bearing can achieve effective identification of fault categories and is superior to comparative methods.  相似文献   

6.
The concept of a binary feature tree (BFT) and the principle of its formation are described. A pattern is divided into sub-parts by comparing its similarity with other patterns. The BFT is established by sub-parts of a group of patterns and mapped into a three layered neural network which Sethi called an entropy network. The interconnection pattern between the first and hidden layers is formed according to the “AND“ relationship of node feature patterns determined by BFT. The interconnection pattern between the hidden and last layers is obtained by training. The advantage of the proposed network is that the scale is small because a feature neuron is adopted and the interconnection is local instead of full; therefore, it is easily implemented by either hardware or software. Two simulation examples show the success of the entropy network for pattern recognition. A feature extraction by an optical inner product method is also described.Presented at 1996 International Topical Meeting on Optical Computing (OC ‘96), April 21-25, Sendai, Japan.  相似文献   

7.
The health condition of the rolling bearing seriously affects the operation of the whole mechanical system. When the rolling bearing parts fail, the time series collected in the field generally shows strong nonlinearity and non-stationarity. To obtain the faulty characteristics of mechanical equipment accurately, a rolling bearing fault detection technique based on k-optimized adaptive local iterative filtering (ALIF), improved multiscale permutation entropy (improved MPE), and BP neural network was proposed. In the ALIF algorithm, a k-optimized ALIF method based on permutation entropy (PE) is presented to select the number of ALIF decomposition layers adaptively. The completely average coarse-graining method was proposed to excavate more hidden information. The performance analysis of the simulation signal shows that the improved MPE can more accurately dig out the depth information of the time series, and the entropy value obtained is more consistent and stable. In the research application, rolling bearing time series are decomposed by k-optimized ALIF to obtain a certain number of intrinsic mode functions (IMFs). Then the improved MPE value of effective IMF is calculated and input into backpropagation (BP) neural network as the feature vector for automatic fault identification. The comparative analysis of simulation signals shows that this method can extract fault information effectively. At the same time, the experimental part shows that this scheme not only effectively extracts the fault features, but also realizes the classification and identification of different fault modes and faults of different degrees, which has a certain application prospect in the research and application direction of rolling bearing fault identification.  相似文献   

8.
Entropy indicates irregularity or randomness of a dynamic system. Over the decades, entropy calculated at different scales of the system through subsampling or coarse graining has been used as a surrogate measure of system complexity. One popular multi-scale entropy analysis is the multi-scale sample entropy (MSE), which calculates entropy through the sample entropy (SampEn) formula at each time scale. SampEn is defined by the “logarithmic likelihood” that a small section (within a window of a length m) of the data “matches” with other sections will still “match” the others if the section window length increases by one. “Match” is defined by a threshold of r times standard deviation of the entire time series. A problem of current MSE algorithm is that SampEn calculations at different scales are based on the same matching threshold defined by the original time series but data standard deviation actually changes with the subsampling scales. Using a fixed threshold will automatically introduce systematic bias to the calculation results. The purpose of this paper is to mathematically present this systematic bias and to provide methods for correcting it. Our work will help the large MSE user community avoiding introducing the bias to their multi-scale SampEn calculation results.  相似文献   

9.
Unfavorable driving states can cause a large number of vehicle crashes and are significant factors in leading to traffic accidents. Hence, the aim of this research is to design a robust system to detect unfavorable driving states based on sample entropy feature analysis and multiple classification algorithms. Multi-channel Electroencephalography (EEG) signals are recorded from 16 participants while performing two types of driving tasks. For the purpose of selecting optimal feature sets for classification, principal component analysis (PCA) is adopted for reducing dimensionality of feature sets. Multiple classification algorithms, namely, K nearest neighbor (KNN), decision tree (DT), support vector machine (SVM) and logistic regression (LR) are employed to improve the accuracy of unfavorable driving state detection. We use 10-fold cross-validation to assess the performance of the proposed systems. It is found that the proposed detection system, based on PCA features and the cubic SVM classification algorithm, shows robustness as it obtains the highest accuracy of 97.81%, sensitivity of 96.93%, specificity of 98.73% and precision of 98.75%. Experimental results show that the system we designed can effectively monitor unfavorable driving states.  相似文献   

10.
We analyze the permutation entropy of deterministic chaotic signals affected by a weak observational noise. We investigate the scaling dependence of the entropy increase on both the noise amplitude and the window length used to encode the time series. In order to shed light on the scenario, we perform a multifractal analysis, which allows highlighting the emergence of many poorly populated symbolic sequences generated by the stochastic fluctuations. We finally make use of this information to reconstruct the noiseless permutation entropy. While this approach works quite well for Hénon and tent maps, it is much less effective in the case of hyperchaos. We argue about the underlying motivations.  相似文献   

11.
Among various modifications of the permutation entropy defined as the Shannon entropy of the ordinal pattern distribution underlying a system, a variant based on Rényi entropies was considered in a few papers. This paper discusses the relatively new concept of Rényi permutation entropies in dependence of non-negative real number q parameterizing the family of Rényi entropies and providing the Shannon entropy for q=1. Its relationship to Kolmogorov–Sinai entropy and, for q=2, to the recently introduced symbolic correlation integral are touched.  相似文献   

12.
针对多类运动想象情况下存在的脑电信号识别正确率比较低的问题,提出了一种将小波包方差,小波包熵和共同空间模式相结合的脑电信号特征提取,输入到支持向量机达到分类目的。首先选择小波包去噪后重要导联的脑电信号,进行小波包分解;然后对通道优化选取的重要导联的每个通道信号计算方差和熵值,对重要导联的每个通道信号的子带系数进行重构后,进行共同空间模式特征提取;最后结合2种不同导联方式所获取的特征向量进行分类。采用BCI2005desc_IIIa中l1b数据,该算法的分类正确率最高达到88.75%,相对2种单一的提取方法分别提高28.27%和6.55%。结果表明该算法能够有效提取特征向量,进而改善多类识别正确率较低的问题。  相似文献   

13.
Spectrum sensing is an important function in radio frequency spectrum management and cognitive radio networks. Spectrum sensing is used by one wireless system (e.g., a secondary user) to detect the presence of a wireless service with higher priority (e.g., a primary user) with which it has to coexist in the radio frequency spectrum. If the wireless signal is detected, the second user system releases the given frequency to maintain the principle of not interfering. This paper proposes a machine learning implementation of spectrum sensing using the entropy measure as a feature vector. In the training phase, the information about the activity of the wireless service with higher priority is gathered, and the model is formed. In the classification phase, the wireless system compares the current sensing report to the created model to calculate the posterior probability and classify the sensing report into either the presence or absence of wireless service with higher priority. This paper proposes the novel application of the Fluctuation Dispersion Entropy (FDE) measure recently introduced in the research community as a feature vector to build the model and implement the classification. An improved implementation of the FDE (IFDE) is used to enhance the robustness to noise. IFDE is further enhanced with an adaptive method (AIFDE) to automatically select the hyper-parameter introduced in IFDE. Then, this paper combines the machine learning approach with the entropy measure approach, which are both recent developments in spectrum sensing research. The approach is compared to similar approaches in literature and the classical energy detection method using a generated radar signal data set with different conditions of SNR(dB) and fading conditions. The results show that the proposed approach is able to outperform the approaches from literature based on other entropy measures or the Energy Detector (ED) in a consistent way across different levels of SNR and fading conditions.  相似文献   

14.
Schizophrenia is a neuropsychiatric disease that affects the nonlinear dynamics of brain activity. The primary objective of this study was to explore the complexity of magnetoencephalograms (MEG) in patients with schizophrenia. We combined a multiscale method and weighted permutation entropy to characterize MEG signals from 19 schizophrenia patients and 16 healthy controls. When the scale was larger than 42, the MEG signals of schizophrenia patients were significantly more complex than those of healthy controls (p<0.004). The difference in complexity between patients with schizophrenia and the controls was strongest in the frontal and occipital areas (p<0.001), and there was almost no difference in the central area. In addition, the results showed that the dynamic range of MEG complexity is wider in healthy individuals than in people with schizophrenia. Overall, the multiscale weighted permutation entropy method reliably quantified the complexity of MEG from schizophrenia patients, contributing to the development of potential magnetoencephalographic biomarkers for schizophrenia.  相似文献   

15.
There is much interest in resolving the quantum corrections to Bekenstein-Hawking entropy with a large length scale limit. The leading correction term is given by the logarithm of black hole area with a model-dependent coefficient. Recently the research for quantum gravity implies the emergence of a modification of theenergy-momentum dispersion relation (MDR), which plays an importantrole in the modified black hole thermodynamics. In this paper, we investigate the quantum corrections to Bekenstein-Hawking entropy in four-dimensional Schwarzschild black hole and Reissner-Nordström black hole respectively based on MDR.  相似文献   

16.
Coronary heart disease (CHD) is the leading cause of cardiovascular death. This study aimed to propose an effective method for mining cardiac mechano-electric coupling information and to evaluate its ability to distinguish patients with varying degrees of coronary artery stenosis (VDCAS). Five minutes of electrocardiogram and phonocardiogram signals was collected synchronously from 191 VDCAS patients to construct heartbeat interval (RRI)–systolic time interval (STI), RRI–diastolic time interval (DTI), HR-corrected QT interval (QTcI)–STI, QTcI–DTI, Tpeak–Tend interval (TpeI)–STI, TpeI–DTI, Tpe/QT interval (Tpe/QTI)–STI, and Tpe/QTI–DTI series. Then, the cross sample entropy (XSampEn), cross fuzzy entropy (XFuzzyEn), joint distribution entropy (JDistEn), magnitude-squared coherence function, cross power spectral density, and mutual information were applied to evaluate the coupling of the series. Subsequently, support vector machine recursive feature elimination and XGBoost were utilized for feature selection and classification, respectively. Results showed that the joint analysis of XSampEn, XFuzzyEn, and JDistEn had the best ability to distinguish patients with VDCAS. The classification accuracy of severe CHD—mild-to-moderate CHD group, severe CHD—chest pain and normal coronary angiography (CPNCA) group, and mild-to-moderate CHD—CPNCA group were 0.8043, 0.7659, and 0.7500, respectively. The study indicates that the joint analysis of XSampEn, XFuzzyEn, and JDistEn can effectively capture the cardiac mechano-electric coupling information of patients with VDCAS, which can provide valuable information for clinicians to diagnose CHD.  相似文献   

17.
The goal of the paper is to present a solution to improve the fault detection accuracy of rolling bearings. The method is based on variational mode decomposition (VMD), multiscale permutation entropy (MPE) and the particle swarm optimization-based support vector machine (PSO-SVM). Firstly, the original bearing vibration signal is decomposed into several intrinsic mode functions (IMF) by using the VMD method, and the feature energy ratio (FER) criterion is introduced to reconstruct the bearing vibration signal. Secondly, the multiscale permutation entropy of the reconstructed signal is calculated to construct multidimensional feature vectors. Finally, the constructed multidimensional feature vector is fed into the PSO-SVM classification model for automatic identification of different fault patterns of the rolling bearing. Two experimental cases are adopted to validate the effectiveness of the proposed method. Experimental results show that the proposed method can achieve a higher identification accuracy compared with some similar available methods (e.g., variational mode decomposition-based multiscale sample entropy (VMD-MSE), variational mode decomposition-based multiscale fuzzy entropy (VMD-MFE), empirical mode decomposition-based multiscale permutation entropy (EMD-MPE) and wavelet transform-based multiscale permutation entropy (WT-MPE)).  相似文献   

18.
The working environment of wind turbine gearboxes is complex, complicating the effective monitoring of their running state. In this paper, a new gearbox fault diagnosis method based on improved variational mode decomposition (IVMD), combined with time-shift multi-scale sample entropy (TSMSE) and a sparrow search algorithm-based support vector machine (SSA-SVM), is proposed. Firstly, a novel algorithm, IVMD, is presented for solving the problem where VMD parameters (K and α) need to be selected in advance, which mainly contains two steps: the maximum kurtosis index is employed to preliminarily determine a series of local optimal decomposition parameters (K and α), then from the local parameters, the global optimum parameters are selected based on the minimum energy loss coefficient (ELC). After decomposition by IVMD, the raw signal is divided into K intrinsic mode functions (IMFs), the optimal IMF(s) with abundant fault information is (are) chosen based on the minimum envelopment entropy criterion. Secondly, the time-shift technique is introduced to information entropy, the time-shift multi-scale sample entropy algorithm is applied for the analysis of the complexity of the chosen optimal IMF and extract fault feature vectors. Finally, the sparrow search algorithm, which takes the classification error rate of SVM as the fitness function, is used to adaptively optimize the SVM parameters. Next, the extracted TSMSEs are input into the SSA-SVM model as the feature vector to identify the gear signal types under different conditions. The simulation and experimental results confirm that the proposed method is feasible and superior in gearbox fault diagnosis when compared with other methods.  相似文献   

19.
光谱最小信息熵的高光谱影像端元提取算法   总被引:3,自引:0,他引:3  
端元提取是混合像元分解的关键,研究其算法在高精度的地物识别、丰度反演和定量遥感等方面具有重要意义。通过研究高光谱遥感影像光谱特征,结合信息熵理论,应用高斯分布函数,建立了一种新的高光谱影像端元提取算法,即光谱最小信息熵(spectral minimum shannon entropy,SMSE)算法。将该算法应用于AVRIRS高光谱影像的端元光谱提取,并经过与美国地质勘探局(United States Geological Survey,USGS)波谱库中的数据匹配,得知其提取端元的精度较高。同时,通过与经典的纯净像元指数(pixel purity index,PPI)和连续最大角凸锥(sequential maximum angle convex cone,SMACC)等端元提取算法进行实验比较和结果综合分析,发现光谱最小信息熵算法提取端元光谱效率更高、精度更好。此外,分别利用SMACC和SMSE提取Hyperion高光谱影像端元,得出SMSE的端元提取效果好于SMACC,从而可认为SMSE算法具有一定普适性。  相似文献   

20.
针对现有陶瓷制品敲击声波信号特征提取方法中提取的特征代表性降低的问题,该文提出结合最大重叠离散小波包变换(MODWPT)和时频分帧能量熵的特征提取方法。首先采用MODWPT将信号分解为4层,再对每个节点的子信号分帧后计算各个节点的时频分帧能量熵,然后根据能量分布特征选择了前6个节点的时频分帧能量熵特征,最后构建随机森林分类器完成识别。将该方法和MODWPT时频分段能量熵、MODWPT归一化能量特征两种方法进行比较。实验结果表明,相比MODWPT时频分段能量熵、MODWPT归一化能量两种特征提取方法,MODWPT时频分帧能量熵能提升特征的代表性,具有更优的陶瓷制品敲击声波信号特征识别性能,其识别的F1值达到了98.46%,相比上述两种方法分别提升F1值3.22%、1.86%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号