首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Private Information Retrieval (PIR) protocols, which allow the client to obtain data from servers without revealing its request, have many applications such as anonymous communication, media streaming, blockchain security, advertisement, etc. Multi-server PIR protocols, where the database is replicated among the non-colluding servers, provide high efficiency in the information-theoretic setting. Beimel et al. in CCC 12’ (further referred to as BIKO) put forward a paradigm for constructing multi-server PIR, capturing several previous constructions for k3 servers, as well as improving the best-known share complexity for 3-server PIR. A key component there is a share conversion scheme from corresponding linear three-party secret sharing schemes with respect to a certain type of “modified universal” relation. In a useful particular instantiation of the paradigm, they used a share conversion from (2,3)-CNF over Zm to three-additive sharing over Zpβ for primes p1,p2,p where p1p2 and m=p1·p2, and the relation is modified universal relation CSm. They reduced the question of the existence of the share conversion for a triple (p1,p2,p) to the (in)solvability of a certain linear system over Zp, and provided an efficient (in m,logp) construction of such a sharing scheme. Unfortunately, the size of the system is Θ(m2) which entails the infeasibility of a direct solution for big m’s in practice. Paskin-Cherniavsky and Schmerler in 2019 proved the existence of the conversion for the case of odd p1, p2 when p=p1, obtaining in this way infinitely many parameters for which the conversion exists, but also for infinitely many of them it remained open. In this work, using some algebraic techniques from the work of Paskin-Cherniavsky and Schmerler, we prove the existence of the conversion for even m’s in case p=2 (we computed β in this case) and the absence of the conversion for even m’s in case p>2. This does not improve the concrete efficiency of 3-server PIR; however, our result is promising in a broader context of constructing PIR through composition techniques with k3 servers, using the relation CSm where m has more than two prime divisors. Another our suggestion about 3-server PIR is that it’s possible to achieve a shorter server’s response using the relation CSm for extended SmSm. By computer search, in BIKO framework we found several such sets for small m’s which result in share conversion from (2,3)-CNF over Zm to 3-additive secret sharing over Zpβ, where β>0 is several times less than β, which implies several times shorter server’s response. We also suggest that such extended sets Sm can result in better PIR due to the potential existence of matching vector families with the higher Vapnik-Chervonenkis dimension.  相似文献   

2.
We study the viable Starobinsky f(R) dark energy model in spatially non-flat FLRW backgrounds, where f(R)=RλRch[1(1+R2/Rch2)1] with Rch and λ representing the characteristic curvature scale and model parameter, respectively. We modify CAMB and CosmoMC packages with the recent observational data to constrain Starobinsky f(R) gravity and the density parameter of curvature ΩK. In particular, we find the model and density parameters to be λ1<0.283 at 68% C.L. and ΩK=0.000990.0042+0.0044 at 95% C.L., respectively. The best χ2 fitting result shows that χf(R)2χΛCDM2, indicating that the viable f(R) gravity model is consistent with ΛCDM when ΩK is set as a free parameter. We also evaluate the values of AIC, BIC and DIC for the best fitting results of f(R) and ΛCDM models in the non-flat universe.  相似文献   

3.
We study some properties of binary sequences generated by random substitutions of constant length. Specifically, assuming the alphabet {0,1}, we consider the following asymmetric substitution rule of length k: 00,0,,0 and 1Y1,Y2,,Yk, where Yi is a Bernoulli random variable with parameter p[0,1]. We obtain by recurrence the discrete probability distribution of the stochastic variable that counts the number of ones in the sequence formed after a number i of substitutions (iterations). We derive its first two statistical moments, mean and variance, and the entropy of the generated sequences as a function of the substitution length k for any successive iteration i, and characterize the values of p where the maxima of these measures occur. Finally, we obtain the parametric curves entropy-variance for each iteration and substitution length. We find two regimes of dependence between these two variables that, to our knowledge, have not been previously described. Besides, it allows to compare sequences with the same entropy but different variance and vice versa.  相似文献   

4.
Since the grand partition function Zq for the so-called q-particles (i.e., quons), q(1,1), cannot be computed by using the standard 2nd quantisation technique involving the full Fock space construction for q=0, and its q-deformations for the remaining cases, we determine such grand partition functions in order to obtain the natural generalisation of the Plank distribution to q[1,1]. We also note the (non) surprising fact that the right grand partition function concerning the Boltzmann case (i.e., q=0) can be easily obtained by using the full Fock space 2nd quantisation, by considering the appropriate correction by the Gibbs factor 1/n! in the n term of the power series expansion with respect to the fugacity z. As an application, we briefly discuss the equations of the state for a gas of free quons or the condensation phenomenon into the ground state, also occurring for the Bose-like quons q(0,1).  相似文献   

5.
This article estimates several integral inequalities involving (hm)-convexity via the quantum calculus, through which Important integral inequalities including Simpson-like, midpoint-like, averaged midpoint-trapezoid-like and trapezoid-like are extended. We generalized some quantum integral inequalities for q-differentiable (hm)-convexity. Our results could serve as the refinement and the unification of some classical results existing in the literature by taking the limit q1.  相似文献   

6.
The equation yxx=f(x)y2+g(x)y3 is the charged generalization of the Emden-Fowler equation that is crucial in the study of spherically symmetric shear-free spacetimes. This version arises from the Einstein–Maxwell system for a charged shear-free matter distribution. We integrate this equation and find a new first integral. For this solution to exist, two integral equations arise as integrability conditions. The integrability conditions can be transformed to nonlinear differential equations, which give explicit forms for f(x) and g(x) in terms of elementary and special functions. The explicit forms f(x)1x511x11/5 and g(x)1x611x12/5 arise as repeated roots of a fourth order polynomial. This is a new solution to the Einstein-Maxwell equations. Our result complements earlier work in neutral and charged matter showing that the complexity of a charged self-gravitating fluid is connected to the existence of a first integral.  相似文献   

7.
Solving linear systems of equations is one of the most common and basic problems in classical identification systems. Given a coefficient matrix A and a vector b, the ultimate task is to find the solution x such that Ax=b. Based on the technique of the singular value estimation, the paper proposes a modified quantum scheme to obtain the quantum state |x corresponding to the solution of the linear system of equations in O(κ2rpolylog(mn)/ϵ) time for a general m×n dimensional A, which is superior to existing quantum algorithms, where κ is the condition number, r is the rank of matrix A and ϵ is the precision parameter. Meanwhile, we also design a quantum circuit for the homogeneous linear equations and achieve an exponential improvement. The coefficient matrix A in our scheme is a sparsity-independent and non-square matrix, which can be applied in more general situations. Our research provides a universal quantum linear system solver and can enrich the research scope of quantum computation.  相似文献   

8.
A possible detection of sub-solar mass ultra-compact objects would lead to new perspectives on the existence of black holes that are not of astrophysical origin and/or pertain to formation scenarios of exotic ultra-compact objects. Both possibilities open new perspectives for better understanding of our universe. In this work, we investigate the significance of detection of sub-solar mass binaries with components mass in the range: 102M up to 1M, within the expected sensitivity of the ground-based gravitational waves detectors of third generation, viz., the Einstein Telescope (ET) and the Cosmic Explorer (CE). Assuming a minimum of amplitude signal-to-noise ratio for detection, viz., ρ=8, we find that the maximum horizon distances for an ultra-compact binary system with components mass 102M and 1M are 40 Mpc and 1.89 Gpc, respectively, for ET, and 125 Mpc and 5.8 Gpc, respectively, for CE. Other cases are also presented in the text. We derive the merger rate and discuss consequences on the abundances of primordial black hole (PBH), fPBH. Considering the entire mass range [102–1]M, we find fPBH<0.70 (<0.06) for ET (CE), respectively.  相似文献   

9.
It has recently been shown in the Eastern Mediterranean that by combining natural time analysis of seismicity with earthquake networks based on similar activity patterns and earthquake nowcasting, an estimate of the epicenter location of a future strong earthquake can be obtained. This is based on the construction of average earthquake potential score maps. Here, we propose a method of obtaining such estimates for a highly seismically active area that includes Southern California, Mexico and part of Central America, i.e., the area N1035W80120. The study includes 28 strong earthquakes of magnitude M 7.0 that occurred during the time period from 1989 to 2020. The results indicate that there is a strong correlation between the epicenter of a future strong earthquake and the average earthquake potential score maps. Moreover, the method is also applied to the very recent 7 September 2021 Guerrero, Mexico, M7 earthquake as well as to the 22 September 2021 Jiquilillo, Nicaragua, M6.5 earthquake with successful results. We also show that in 28 out of the 29 strong M 7.0 EQs studied, their epicenters lie close to an estimated zone covering only 8.5% of the total area.  相似文献   

10.
11.
An end-to-end joint source–channel (JSC) encoding matrix and a JSC decoding scheme using the proposed bit flipping check (BFC) algorithm and controversial variable node selection-based adaptive belief propagation (CVNS-ABP) decoding algorithm are presented to improve the efficiency and reliability of the joint source–channel coding (JSCC) scheme based on double Reed–Solomon (RS) codes. The constructed coding matrix can realize source compression and channel coding of multiple sets of information data simultaneously, which significantly improves the coding efficiency. The proposed BFC algorithm uses channel soft information to select and flip the unreliable bits and then uses the redundancy of the source block to realize the error verification and error correction. The proposed CVNS-ABP algorithm reduces the influence of error bits on decoding by selecting error variable nodes (VNs) from controversial VNs and adding them to the sparsity of the parity-check matrix. In addition, the proposed JSC decoding scheme based on the BFC algorithm and CVNS-ABP algorithm can realize the connection of source and channel to improve the performance of JSC decoding. Simulation results show that the proposed BFC-based hard-decision decoding (BFC-HDD) algorithm (ζ = 1) and BFC-based low-complexity chase (BFC-LCC) algorithm (ζ = 1, η = 3) can achieve about 0.23 dB and 0.46 dB of signal-to-noise ratio (SNR) defined gain over the prior-art decoding algorithm at a frame error rate (FER) = 101. Compared with the ABP algorithm, the proposed CVNS-ABP algorithm and BFC-CVNS-ABP algorithm achieve performance gains of 0.18 dB and 0.23 dB, respectively, at FER = 103.  相似文献   

12.
13.
In this paper, a methodology for a non-linear system state estimation is demonstrated, exploiting the input and parameter observability. For this purpose, the initial system is transformed into the canonical observability form, and the function that aggregates the non-linear dynamics of the system, which may be unknown or difficult to be computed, is approximated by a linear combination of Laguerre polynomials. Hence, the system identification translates into the estimation of the parameters involved in the linear combination in order for the system to be observable. For the validation of the elaborated observer, we consider a biological model from the literature, investigating whether it is practically possible to infer its states, taking into account the new coordinates to design the appropriate observer of the system states. Through simulations, we investigate the parameter settings under which the new observer can identify the state of the system. More specifically, as the parameter θ increases, the system converges more quickly to the steady-state, decreasing the respective distance from the system’s initial state. As for the first state, the estimation error is in the order of 102 for θ=15, and assuming c0={0,1},c1=1. Under the same conditions, the estimation error of the system’s second state is in the order of 101, setting a performance difference of 101 in relation to the first state. The outcomes show that the proposed observer’s performance can be further improved by selecting even higher values of θ. Hence, the system is observable through the measurement output.  相似文献   

14.
In this paper, we propose a broad learning system based on the sparrow search algorithm. Firstly, in order to avoid the complicated manual parameter tuning process and obtain the best combination of hyperparameters, the sparrow search algorithm is used to optimize the shrinkage coefficient (r) and regularization coefficient (λ) in the broad learning system to improve the prediction accuracy of the model. Second, using the broad learning system to build a network interface flow forecasting model. The flow values in the time period [T11,T] are used as the characteristic values of the traffic at the moment T+1. The hyperparameters outputted in the previous step are fed into the network to train the broad learning system network traffic prediction model. Finally, to verify the model performance, this paper trains the prediction model on two public network flow datasets and real traffic data of an enterprise cloud platform switch interface and compares the proposed model with the broad learning system, long short-term memory, and other methods. The experiments show that the prediction accuracy of this method is higher than other methods, and the moving average reaches 97%, 98%, and 99% on each dataset, respectively.  相似文献   

15.
In this work, first, we consider novel parameterized identities for the left and right part of the (p,q)-analogue of Hermite–Hadamard inequality. Second, using these new parameterized identities, we give new parameterized (p,q)-trapezoid and parameterized (p,q)-midpoint type integral inequalities via η-quasiconvex function. By changing values of parameter μ[0,1], some new special cases from the main results are obtained and some known results are recaptured as well. Finally, at the end, an application to special means is given as well. This new research has the potential to establish new boundaries in comparative literature and some well-known implications. From an application perspective, the proposed research on the η-quasiconvex function has interesting results that illustrate the applicability and superiority of the results obtained.  相似文献   

16.
Describing the permanence of cultural objects is an important step in understanding societal trends. A relatively novel cultural object is the video game, which is an interactive media, that is, the player is an active contributor to the overall experience. This article aims to investigate video game permanence in collective memory using their popularity as a proxy, employing data based on the Steam platform from July 2012 to December 2020. The objectives include characterizing the database; studying the growth of players, games, and game categories; providing a model for the relative popularity distribution; and applying this model in three strata, global, major categories, and among categories. We detected linear growth trends in the number of players and the number of categories, and an exponential trend in the number of games released. Furthermore, we verified that lognormal distributions, emerging from multiplicative processes, provide a first approximation for the popularity in all strata. In addition, we proposed an improvement via Box–Cox transformations with similar parameters (from 0.12 (95% CI: 0.18, 0.07) to 0.04 (95% CI: 0.08, 0)). We were able to justify this improved model by interpreting the magnitude of each Box–Cox parameter as a measure of memory effects.  相似文献   

17.
The spectral slope of magnetohydrodynamic (MHD) turbulence varies depending on the spectral theory considered; 3/2 is the spectral slope in Kraichnan–Iroshnikov–Dobrowolny (KID) theory, 5/3 in Marsch–Matthaeus–Zhou and Goldreich–Sridhar theories, also called Kolmogorov-like (K-41-like) MHD theory, the combination of the 5/3 and 3/2 scales in Biskamp, and so on. A rigorous mathematical proof to any of these spectral theories is of great scientific interest. Motivated by the 2012 work of A. Biryuk and W. Craig (Physica D 241(2012) 426–438), we establish inertial range bounds for K-41-like phenomenon in MHD turbulent flow through a mathematical rigor; a range of wave numbers in which the spectral slope of MHD turbulence is proportional to 5/3 is established and the upper and lower bounds of this range are explicitly formulated. We also have shown that the Leray weak solution of the standard MHD model is bonded in the Fourier space, the spectral energy of the system is bounded and its average over time decreases in time.  相似文献   

18.
In this work, we derive Born’s rule from the pilot-wave theory of de Broglie and Bohm. Based on a toy model involving a particle coupled to an environment made of “qubits” (i.e., Bohmian pointers), we show that entanglement together with deterministic chaos leads to a fast relaxation from any statistical distribution ρ(x) of finding a particle at point x to the Born probability law |Ψ(x)|2. Our model is discussed in the context of Boltzmann’s kinetic theory, and we demonstrate a kind of H theorem for the relaxation to the quantum equilibrium regime.  相似文献   

19.
Reconciliation is an essential procedure for continuous-variable quantum key distribution (CV-QKD). As the most commonly used reconciliation protocol in short-distance CV-QKD, the slice error correction (SEC) allows a system to distill more than 1 bit from each pulse. However, the quantization efficiency is greatly affected by the noisy channel with a low signal-to-noise ratio (SNR), which usually limits the secure distance to about 30 km. In this paper, an improved SEC protocol, named Rotated-SEC (RSEC), is proposed through performing a random orthogonal rotation on the raw data before quantization, and deducing a new estimator for the quantized sequences. Moreover, the RSEC protocol is implemented with polar codes. The experimental results show that the proposed protocol can reach up to a quantization efficiency of about 99%, and maintain at around 96% even at the relatively low SNRs (0.5,1), which theoretically extends the secure distance to about 45 km. When implemented with the polar codes with a block length of 16 Mb, the RSEC achieved a reconciliation efficiency of above 95%, which outperforms all previous SEC schemes. In terms of finite-size effects, we achieved a secret key rate of 7.83×103 bits/pulse at a distance of 33.93 km (the corresponding SNR value is 1). These results indicate that the proposed protocol significantly improves the performance of SEC and is a competitive reconciliation scheme for the CV-QKD system.  相似文献   

20.
In this paper, we establish new (p,q)κ1-integral and (p,q)κ2-integral identities. By employing these new identities, we establish new (p,q)κ1 and (p,q)κ2- trapezoidal integral-type inequalities through strongly convex and quasi-convex functions. Finally, some examples are given to illustrate the investigated results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号