首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed case study is made of one particular solution of the 2D incompressible Navier–Stokes equations. Careful mesh refinement studies were made using four different methods (and computer codes): (1) a high-order finite-element method solving the unsteady equations by time-marching; (2) a high-order finite-element method solving both the steady equations and the associated linear-stability problem; (3) a second-order finite difference method solving the unsteady equations in streamfunction form by time-marching; and (4) a spectral-element method solving the unsteady equations by time-marching. The unanimous conclusion is that the correct solution for flow over the backward-facing step at Re = 800 is steady—and it is stable, to both small and large perturbations.  相似文献   

2.
This paper presents a computational simulation method for a river problem. For the actual flow problem, it is necessary to compute flow velocity, water elevation and water region at the same time. For the basic formulation, the unsteady shallow water equations are used. As the numerical approach, implicit FEM is proposed by bubble function. To control numerical stability and accuracy, LSBF (Least-Squares Bubble Function) is used to solve the finite element equations. Also, the fixed boundary technique is combined to deal with wet and dry areas in the moving finite element mesh. Some numerical tests are shown to check this method.  相似文献   

3.
A time-implicit numerical method for solving unsteady incompressible viscous flow problems is introduced. The method is based on introducing intermediate compressibility into a projection scheme to obtain a Helmholtz equation for a pressure-type variable. The intermediate compressibility increases the diagonal dominance of the discretized pressure equation so that the Helmholtz pressure equation is relatively easy to solve numerically. The Helmholtz pressure equation provides an iterative method for satisfying the continuity equation for time-implicit Navier–Stokes algorithms. An iterative scheme is used to simultaneously satisfy, within a given tolerance, the velocity divergence-free condition and momentum equations at each time step. Collocated primitive variables on a non-staggered finite difference mesh are used. The method is applied to an unsteady Taylor problem and unsteady laminar flow past a circular cylinder.  相似文献   

4.
5.
This paper shows how the mesh adaptation technique can be exploited for the numerical simulation of shallow water flow. The shallow water equations are numerically approximated by the Galerkin finite element method, using linear elements for the elevation field and quadratic elements for the unit width discharge field; the time advancing scheme is of a fractional step type. The standard mesh refinement technique is coupled with the numerical solver; movement and elimination of nodes of the initial triangulation is not allowed. Two error indicators are discussed and applied in the numerical examples. The conclusion focuses the relevant advantages obtained by applying this adaptive approach by considering specific test cases of steady and unsteady flows. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
两种湍流模型时域颤振计算方法研究   总被引:2,自引:2,他引:0  
采用时域计算分析方法进行了机翼跨音速颤振特性研究。在结构运动网格的基础上,采用格点格式有限体积方法进行空间离散和双时间全隐式方法进行时间推进求解雷诺平均N-S方程。针对流动粘性分别应用了SST湍流模型和SSG雷诺应力模型,通过对跨音速标模算例AGARD445.6机翼的计算结果与实验值的对比分析,其中应用SST湍流模型得到的颤振速度与实验值最为接近,特别是在跨音速段平均相对误差在3%以内;并且计算结果整体上反映了跨音速颤振"凹坑"物理特性,验证了方法的有效性。  相似文献   

7.
In this paper we present a finite difference method for solving two-dimensional viscoelastic unsteady free surface flows governed by the single equation version of the eXtended Pom-Pom (XPP) model. The momentum equations are solved by a projection method which uncouples the velocity and pressure fields. We are interested in low Reynolds number flows and, to enhance the stability of the numerical method, an implicit technique for computing the pressure condition on the free surface is employed. This strategy is invoked to solve the governing equations within a Marker-and-Cell type approach while simultaneously calculating the correct normal stress condition on the free surface. The numerical code is validated by performing mesh refinement on a two-dimensional channel flow. Numerical results include an investigation of the influence of the parameters of the XPP equation on the extrudate swelling ratio and the simulation of the Barus effect for XPP fluids.  相似文献   

8.
In the present paper an unsteady thermal flow of non-Newtonian fluid is investigated which is of the fiow into axisymmetric mould cavity. In the second part an unsteady thermal flow of upper-convected Maxwell fluid is studied, For the flow into mould cavity the constitutive equation of power-law fluid is used as a rheological model of polymer fluid. The apparent viscosity is considered as a function of shear rate and temperature. A characteristic viscosity is introduced in order to avoid the nonlinearity due to the temperature dependence of the apparent viscosity. As the viscosity of the fluid is relatively high the flow of the thermal fluid can be considered as a flow of fully developed velocity field. However, the temperature field of the fluid fiow is considered as an unsteady one. The governing equations are constitutive equation, momentum equation of steady flow and energy conservation equation of non-steady form. The present system of equations has been solved numerically by the splitting differen  相似文献   

9.
A new vortex particle‐in‐cell method for the simulation of three‐dimensional unsteady incompressible viscous flow is presented. The projection of the vortex strengths onto the mesh is based on volume interpolation. The convection of vorticity is treated as a Lagrangian move operation but one where the velocity of each particle is interpolated from an Eulerian mesh solution of velocity–Poisson equations. The change in vorticity due to diffusion is also computed on the Eulerian mesh and projected back to the particles. Where diffusive fluxes cause vorticity to enter a cell not already containing any particles new particles are created. The surface vorticity and the cancellation of tangential velocity at the plate are related by the Neumann conditions. The basic framework for implementation of the procedure is also introduced where the solution update comprises a sequence of two fractional steps. The method is applied to a problem where an unsteady boundary layer develops under the impact of a vortex ring and comparison is made with the experimental and numerical literature. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Aerodynamic characteristics of various geometries are predicted using a finite element formulation coupled with several numerical techniques to ensure stability and accuracy of the method. First, an edge‐based error estimator and anisotropic mesh adaptation are used to detect automatically all flow features under the constraint of a fixed number of elements, thus controlling the computational cost. A variational multiscale‐stabilized finite element method is used to solve the incompressible Navier‐Stokes equations. Finally, the Spalart‐Allmaras turbulence model is solved using the streamline upwind Petrov‐Galerkin method. This paper is meant to show that the combination of anisotropic unsteady mesh adaptation with stabilized finite element methods provides an adequate framework for solving turbulent flows at high Reynolds numbers. The proposed method was validated on several test cases by confrontation with literature of both numerical and experimental results, in terms of accuracy on the prediction of the drag and lift coefficients as well as their evolution in time for unsteady cases.  相似文献   

11.
In this work, an approach for performing mesh adaptation in the numerical simulation of two‐dimensional unsteady flow with moving immersed boundaries is presented. In each adaptation period, the mesh is refined in the regions where the solution evolves or the moving bodies pass and is unrefined in the regions where the phenomena or the bodies deviate. The flow field and the fluid–solid interface are recomputed on the adapted mesh. The adaptation indicator is defined according to the magnitude of the vorticity in the flow field. There is no lag between the adapted mesh and the computed solution, and the adaptation frequency can be controlled to reduce the errors due to the solution transferring between the old mesh and the new one. The preservation of conservation property is mandatory in long‐time scale simulations, so a P1‐conservative interpolation is used in the solution transferring. A nonboundary‐conforming method is employed to solve the flow equations. Therefore, the moving‐boundary flows can be simulated on a fixed mesh, and there is no need to update the mesh at each time step to follow the motion or the deformation of the solid boundary. To validate the present mesh adaptation method, we have simulated several unsteady flows over a circular cylinder stationary or with forced oscillation, a single self‐propelled swimming fish, and two fish swimming in the same or different directions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A 2-D analysis is made for the dynamic interactions between viscous flow and one or more circular cylinders. The cylinder is free to respond to the fluid excitation and its motions are part of the solution. The numerical procedure is based on the finite volume discretization of the Navier–Stokes equations on adaptive tri-tree grids which are unstructured and nonorthogonal. Both a fully implicit scheme and a semi-implicit scheme in the time domain have been used for the momentum equations, while the pressure correction method based on the SIMPLE technique is adopted to satisfy the continuity equation. A new upwind method is developed for the triangular and unstructured mesh, which requires information only from two neighbouring cells but is of order of accuracy higher than linear. A new procedure is also introduced to deal with the nonorthogonal term. The pressure on the body surface required in solving the momentum equation is obtained through the Poisson equation in the local cell. Results including flow field, pressure distribution and force are provided for fixed single and multiple cylinders and for an unrestrained cylinder in steady incoming flow with Reynolds numbers at 200 and 500 and in unsteady flow with Keulegan–Carpenter numbers at 5 and 10.  相似文献   

13.
为解决裂隙岩体非稳态渗流问题, 发展了一种新的数值模型. 对于单裂隙渗 流求解, 其控制方程是基于一定假设的简化Navier-Stokes方程, 数值方法采用有限差分法 和流体体积法. 在裂隙网络中, 交界处渗流可以由专门的控制方程求解. 计算结果表明, 该 数值模型既可以大幅提高非稳态渗流的计算效率, 还可以避免孤立裂隙所带来的影响. 最后, 通过两个工程算例验证该数值模型的适用性.  相似文献   

14.
Numerical simulation of open water flow in natural courses seems to be doomed to one- or two-dimensional numerical simulations. Investigations of flow hydrodynamics through the application of three-dimensional models actually have very few appearances in the literature. This paper discusses the development and the initial implementation of a general three-dimensional and time-dependent finite volume approach to simulate the hydrodynamics of surface water flow in rivers and lakes. The slightly modified Navier-Stokes equations, together with the continuity and the water depth equations, form the theoretical basis of the model. A body-fitted time-dependent co-ordinate system has been used in the solution process, in order to accommodate the commonly complex and irregular boundary and bathymetry of natural water courses. The proposed adaptive technique allows the mesh to follow the movement of the water boundaries, including the unsteady free-water surface. The primitive variable equations are written in conservative form in the Cartesian co-ordinate system, and the computational procedure is executed in the moveable curvilinear co-ordinate system. Special stabilizing techniques are introduced in order to eliminate the oscillating behaviour associated with the finite volume formulation. Also, a new and comprehensive approximation for the pressure forces at the faces of a control volume is presented. Finally, results of several tests demonstrate the performance of the finite volume approach coupled with the adaptive technique employed in the three-dimensional time-dependent mesh system.  相似文献   

15.
Predicting unsteady flows and aerodynamic forces for large displacement motion of microstructures requires transient solution of Boltzmann equation with moving boundaries. For the inclusion of moving complex boundaries for these problems, three immersed boundary method flux formulations (interpolation, relaxation, and interrelaxation) are presented. These formulations are implemented in a 2‐D finite volume method solver for ellipsoidal‐statistical (ES)‐Bhatnagar‐Gross‐Krook (BGK) equations using unstructured meshes. For the verification, a transient analytical solution for free molecular 1‐D flow is derived, and results are compared with the immersed boundary (IB)‐ES‐BGK methods. In 2‐D, methods are verified with the conformal, non‐moving finite volume method, and it is shown that the interrelaxation flux formulation gives an error less than the interpolation and relaxation methods for a given mesh size. Furthermore, formulations applied to a thermally induced flow for a heated beam near a cold substrate show that interrelaxation formulation gives more accurate solution in terms of heat flux. As a 2‐D unsteady application, IB/ES‐BGK methods are used to determine flow properties and damping forces for impulsive motion of microbeam due to high inertial forces. IB/ES‐BGK methods are compared with Navier–Stokes solution at low Knudsen numbers, and it is shown that velocity slip in the transitional rarefied regime reduces the unsteady damping force. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A fourth‐order finite‐volume method for solving the Navier–Stokes equations on a mapped grid with adaptive mesh refinement is proposed, implemented, and demonstrated for the prediction of unsteady compressible viscous flows. The method employs fourth‐order quadrature rules for evaluating face‐averaged fluxes. Our approach is freestream preserving, guaranteed by the way of computing the averages of the metric terms on the faces of cells. The standard Runge–Kutta marching method is used for time discretization. Solutions of a smooth flow are obtained in order to verify that the method is formally fourth‐order accurate when applying the nonlinear viscous operators on mapped grids. Solutions of a shock tube problem are obtained to demonstrate the effectiveness of adaptive mesh refinement in resolving discontinuities. A Mach reflection problem is solved to demonstrate the mapped algorithm on a non‐rectangular physical domain. The simulation is compared against experimental results. Future work will consider mapped multiblock grids for practical engineering geometries. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A finite volume incompressible flow solver is presented for three‐dimensional unsteady flows based on an unstructured tetrahedral mesh, with collocation of the flow variables at the cell vertices. The solver is based on the pressure‐correction method, with an explicit prediction step of the momentum equations followed by a Poisson equation for the correction step to enforce continuity. A consistent discretization of the Poisson equation was found to be essential in obtaining a solution. The correction step was solved with the biconjugate gradient stabilized (Bi‐CGSTAB) algorithm coupled with incomplete lower–upper (ILU) preconditioning. Artificial dissipation is used to prevent the formation of instabilities. Flow solutions are presented for a stalling airfoil, vortex shedding past a bridge deck and flow in model alveoli. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a local domain‐free discretization (DFD) method for the simulation of unsteady flows over moving bodies governed by the incompressible Navier–Stokes equations. The discretization strategy of DFD is that the discrete form of partial differential equations at an interior point may involve some points outside the solution domain. All the mesh points are classified as interior points, exterior dependent points and exterior independent points. The functional values at the exterior dependent points are updated at each time step by the approximate form of solution near the boundary. When the body is moving, only the status of points is changed and the mesh can stay fixed. The issue of ‘freshly cleared nodes/cells’ encountered in usual sharp interface methods does not pose any particular difficulty in the presented method. The Galerkin finite‐element approximation is used for spatial discretization, and the discrete equations are integrated in time via a dual‐time‐stepping scheme based on artificial compressibility. In order to validate the present method for moving‐boundary flow problems, two groups of flow phenomena have been simulated: (1) flows over a fixed circular cylinder, a harmonic in‐line oscillating cylinder in fluid at rest and a transversely oscillating cylinder in uniform flow; (2) flows over a pure pitching airfoil, a heaving–pitching airfoil and a deforming airfoil. The predictions show good agreement with the published numerical results or experimental data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
基于非结构网格求解二维浅水方程的高精度有限体积方法   总被引:1,自引:0,他引:1  
采用HLL格式,在三角形非结构网格下采用有限体积离散,建立了求解二维浅水方程的高精度的数值模型.本文采用多维重构和多维限制器的方法来获得高精度的空间格式以及防止非物理振荡的产生,时间离散采用三阶Runge-Kutta法以获得高阶的时间精度.基于三角形网格,底坡源项采用简单的斜底模型离散,为保证计算格式的和谐性,对经典的HLL格式计算的数值通量中的静水压力项进行了修正.算例证明本文提出的方法的和谐性并具有高精度的间断捕捉能力和稳定性.  相似文献   

20.
An analysis is carried out to study the unsteady two-dimensional Powell-Eyring flow and heat transfer to a laminar liquid film from a horizontal stretching surface in the presence of internal heat generation. The flow of a thin fluid film and subsequent heat transfer from the stretching surface is investigated with the aid of a similarity transformation. The transformation enables to reduce the unsteady boundary layer equations to a system of nonlinear ordinary differential equations. A numerical solution of the resulting nonlinear differential equations is found by using an efficient Chebyshev finite difference method. A comparison of numerical results is made with the earlier published results for limiting cases. The effects of the governing parameters on the flow and thermal fields are thoroughly examined and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号