首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We show the properties and characterization of coherence witnesses. We show methods for constructing coherence witnesses for an arbitrary coherent state. We investigate the problem of finding common coherence witnesses for certain class of states. We show that finitely many different witnesses W1,W2,,Wn can detect some common coherent states if and only if i=1ntiWi is still a witnesses for any nonnegative numbers ti(i=1,2,,n). We show coherent states play the role of high-level witnesses. Thus, the common state problem is changed into the question of when different high-level witnesses (coherent states) can detect the same coherence witnesses. Moreover, we show a coherent state and its robust state have no common coherence witness and give a general way to construct optimal coherence witnesses for any comparable states.  相似文献   

2.
3.
4.
We study bipartite quantum discord as a manifestation of a multipartite entanglement structure in the tripartite purified system. In particular, we find that bipartite quantum discord requires the presence of both bipartite and tripartite entanglement in the purification. This allows one to understand the asymmetry of quantum discord, D(A,B)≠D(B,A)D(A,B)D(B,A) in terms of entanglement monogamy. As instructive special cases, we study discord for qubits and Gaussian states in detail. As a result of this we shed new light on a counterintuitive property of Gaussian states: the presence of classical correlations necessarily requires the presence of quantum correlations. Finally, our results also shed new light on a protocol for remote activation of entanglement by a third party.  相似文献   

5.
6.
The quantum search algorithm is one of the milestones of quantum algorithms. Compared with classical algorithms, it shows quadratic speed-up when searching marked states in an unsorted database. However, the success rates of quantum search algorithms are sensitive to the number of marked states. In this paper, we study the relation between the success rate and the number of iterations in a quantum search algorithm of given λ=M/N, where M is the number of marked state and N is the number of items in the dataset. We develop a robust quantum search algorithm based on Grover–Long algorithm with some uncertainty in the number of marked states. The proposed algorithm has the same query complexity ON as the Grover’s algorithm, and shows high tolerance of the uncertainty in the ratio M/N. In particular, for a database with an uncertainty in the ratio M±MN, our algorithm will find the target states with a success rate no less than 96%.  相似文献   

7.
8.
9.
10.
As known, a method to introduce non-conventional statistics may be realized by modifying the number of possible combinations to put particles in a collection of single-particle states. In this paper, we assume that the weight factor of the possible configurations of a system of interacting particles can be obtained by generalizing opportunely the combinatorics, according to a certain analytical function f{π}(n) of the actual number of particles present in every energy level. Following this approach, the configurational Boltzmann entropy is revisited in a very general manner starting from a continuous deformation of the multinomial coefficients depending on a set of deformation parameters {π}. It is shown that, when f{π}(n) is related to the solutions of a simple linear difference–differential equation, the emerging entropy is a scaled version, in the occupational number representation, of the entropy of degree (κ,r) known, in the framework of the information theory, as Sharma–Taneja–Mittal entropic form.  相似文献   

11.
12.
13.
In this paper, we propose a distributed secure delegated quantum computation protocol, by which an almost classical client can delegate a (dk)-qubit quantum circuit to d quantum servers, where each server is equipped with a 2k-qubit register that is used to process only k qubits of the delegated quantum circuit. None of servers can learn any information about the input and output of the computation. The only requirement for the client is that he or she has ability to prepare four possible qubits in the state of (|0+eiθ|1)/2, where θ{0,π/2,π,3π/2}. The only requirement for servers is that each pair of them share some entangled states (|0|++|1|)/2 as ancillary qubits. Instead of assuming that all servers are interconnected directly by quantum channels, we introduce a third party in our protocol that is designed to distribute the entangled states between those servers. This would simplify the quantum network because the servers do not need to share a quantum channel. In the end, we show that our protocol can guarantee unconditional security of the computation under the situation where all servers, including the third party, are honest-but-curious and allowed to cooperate with each other.  相似文献   

14.
15.
16.
In this paper, we present a new method for the construction of maximally entangled states in CdCd when d2d. A systematic way of constructing a set of maximally entangled bases (MEBs) in CdCd was established. Both cases when d is divisible by d and not divisible by d are discussed. We give two examples of maximally entangled bases in C2C4, which are mutually unbiased bases. Finally, we found a new example of an unextendible maximally entangled basis (UMEB) in C2C5.  相似文献   

17.
Gaussian beam decomposition of high frequency wave fields   总被引:1,自引:0,他引:1  
In this paper, we present a method of decomposing a highly oscillatory wave field into a sparse superposition of Gaussian beams. The goal is to extract the necessary parameters for a Gaussian beam superposition from this wave field, so that further evolution of the high frequency waves can be computed by the method of Gaussian beams. The methodology is described for RdRd with numerical examples for d=2d=2. In the first example, a field generated by an interface reflection of Gaussian beams is decomposed into a superposition of Gaussian beams. The beam parameters are reconstructed to a very high accuracy. The data in the second example is not a superposition of a finite number of Gaussian beams. The wave field to be approximated is generated by a finite difference method for a geometry with two slits. The accuracy in the decomposition increases monotonically with the number of beams.  相似文献   

18.
We study discrete-time quantum walks on generalized Birkhoff polytope graphs (GBPGs), which arise in the solution-set to certain transportation linear programming problems (TLPs). It is known that quantum walks mix at most quadratically faster than random walks on cycles, two-dimensional lattices, hypercubes, and bounded-degree graphs. In contrast, our numerical results show that it is possible to achieve a greater than quadratic quantum speedup for the mixing time on a subclass of GBPG (TLP with two consumers and m suppliers). We analyze two types of initial states. If the walker starts on a single node, the quantum mixing time does not depend on m, even though the graph diameter increases with it. To the best of our knowledge, this is the first example of its kind. If the walker is initially spread over a maximal clique, the quantum mixing time is O(m/ϵ), where ϵ is the threshold used in the mixing times. This result is better than the classical mixing time, which is O(m1.5/ϵ).  相似文献   

19.
20.
In this paper, a methodology for a non-linear system state estimation is demonstrated, exploiting the input and parameter observability. For this purpose, the initial system is transformed into the canonical observability form, and the function that aggregates the non-linear dynamics of the system, which may be unknown or difficult to be computed, is approximated by a linear combination of Laguerre polynomials. Hence, the system identification translates into the estimation of the parameters involved in the linear combination in order for the system to be observable. For the validation of the elaborated observer, we consider a biological model from the literature, investigating whether it is practically possible to infer its states, taking into account the new coordinates to design the appropriate observer of the system states. Through simulations, we investigate the parameter settings under which the new observer can identify the state of the system. More specifically, as the parameter θ increases, the system converges more quickly to the steady-state, decreasing the respective distance from the system’s initial state. As for the first state, the estimation error is in the order of 102 for θ=15, and assuming c0={0,1},c1=1. Under the same conditions, the estimation error of the system’s second state is in the order of 101, setting a performance difference of 101 in relation to the first state. The outcomes show that the proposed observer’s performance can be further improved by selecting even higher values of θ. Hence, the system is observable through the measurement output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号