首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a systematic framework for noncommutative (NC) quantum field theory (QFT) within the new concept of relativistic invariance based on the notion of twisted Poincare symmetry, as proposed by Chaichian et al. [Phys. Lett. B 604, 98 (2004)]. This allows us to formulate and investigate all fundamental issues of relativistic QFT and offers a firm frame for the classification of particles according to the representation theory of the twisted Poincare symmetry and as a result for the NC versions of CPT and spin-statistics theorems, among others, discussed earlier in the literature. As a further application of this new concept of relativism we prove the NC analog of Haag's theorem.  相似文献   

2.
We study quantum field models in indefinite metric. We introduce the modified Wightman axioms of Morchio and Strocchi as a general framework of indefinite metric quantum field theory (QFT) and present concrete interacting relativistic models obtained by analytical continuation from some stochastic processes with Euclidean invariance. As a first step towards scattering theory in indefinite metric QFT, we give a proof of the spectral condition on the translation group for the relativistic models.  相似文献   

3.
The issue of the intrinsic nonlocality of quantum mechanics raised by J. S. Bell is examined from the point of view of the recently developed method of geometro-stochastic quantization and its applications to general relativistic quantum theory. This analysis reveals that a distinction should be made between the topological concept of locality used in formulating relativistic causality and a type of geometric locality based on the concept of fiber bundle, which can be used in extending the strong equivalence principle to the quantum domain. Both play an essential role in formulating a notion of geometro-stochastic propagation based on quantum diffusions, which throws new light on the EPR paradox, on the origin of the arrow of time, and on other fundamental issues in quantum cosmology and the theory of measurement.  相似文献   

4.
An ample amount of evidence supporting the violation of locality has been presented in quantum theory. If such an instantaneous influencing is possible, it is worth considering the possibility of a causality violation in quantum theory, i.e., a future event influencing the past. Motivated by the delayed-choice gedanken experiment, we provide two protocols of entanglement swapping that are subtle in involving causality conditions. In particular, we present protocols in which locality constraints are identical to causality conditions and closely examine Bell-inequalities violation based on these protocols. These protocols will provide a clear picture of how quantum theory still preserves causality while locality is violated. We also discuss a potential threat to the entanglement-based key distribution schemes.  相似文献   

5.
A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.  相似文献   

6.
7.
In quantum mechanical bipartite systems, naive extensions of von Neumann’s projective measurement to nonlocal variables can produce superluminal signals and thus violate causality. We analyze the projective quantum nondemolition state-verification in a two-spin system and see how the projection introduces nonlocality without entanglement. For the ideal measurements of “R-nonlocal” variables, we argue that causality violation can be resolved by introducing further restrictions on the post-measurement states, which makes the measurement “Q-nonlocal”. After we generalize these ideas to quantum mechanical harmonic oscillators, we look into the projective measurements of the particle number of a single mode or a wave-packet of a relativistic quantum field in Minkowski space. It turns out that the causality-violating terms in the expectation values of the local operators, generated either by the ideal measurement of the “R-nonlocal” variable or the quantum nondemolition verification of a Fock state, are all suppressed by the IR and UV cutoffs of the theory. Thus relativistic quantum field theories with such projective measurements are effectively causal.  相似文献   

8.
This note addresses the problem of localization in quantum field theory; more specifically we contribute to the ongoing discussion about the most appropriate concept of localization which one should use in relativistic quantum field theory: through localized test functions or through the fields directly without localized test functions. In standard quantum field theory, i.e., in relativistic quantum field theory in terms of tempered distributions according to Gårding and Wightman, this is done through localized test functions. In hyperfunction quantum field theory (HFQFT), i.e., relativistic quantum field theory in terms of Fourier hyperfunctions this is done through the fields themselves. In support of the second approach we show here that it has a much wider range of applicability. It can even be applied to relativistic quantum field theories which do not admit compactly supported test functions at all. In our construction of explicit models we rely on basic results from the theory of quasi-analytic functions.  相似文献   

9.
10.
These notes review a consistent and exact theory of quantum resonances and decay. Such a theory does not exist in the framework of traditional quantum mechanics and Dirac's formulation. But most of its ingredients have been familiar entities, like the Gamow vectors, the Lippmann-Schwinger (in- and out-plane wave) kets, the Breit-Wigner (Lorentzian) resonance amplitude, the analytically continued S-matrix, and its resonance poles. However, there are inconsistencies and problems with these ingredients: exponential catastrophe, deviations from the exponential law, causality, and recently the ambiguity of the mass and width definition for relativistic resonances. To overcome these problems the above entities will be appropriately defined (as mathematical idealizations). For this purpose we change just one axiom (Hilbert space and/or asymptotic completeness) to a new axiom which distinguishes between (in-)states and (out)observables using Hardy spaces. Then we obtain a consistent quantum theory of scattering and decay which has the Weisskopf-Wigner methods of standard textbooks as an approximation. But it also leads to time-asymmetric semigroup evolution in place of the usual, reversible, unitary group evolution. This, however, can be interpreted as causality for the Born probabilities. Thus we obtain a theoretical framework for the resonance and decay phenomena which is a natural extension of traditional quantum mechanics and possesses the same arrow-of-time as classical electrodynamics. When extended to the relativistic domain, it provides an unambiguous definition for the mass and width of the Z-boson and other relativistic resonances.  相似文献   

11.
We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".  相似文献   

12.
Manifestly covariant quantum theory with invariant evolution parameter is a parametrized relativistic dynamical theory. The study of parameterized relativistic dynamics (PRD) helps us understand the consequences of changing key assumptions of quantum field theory (QFT). QFT has been very successful at explaining physical observations and is the basis of the conventional paradigm, which includes the Standard Model of electroweak and strong interactions. Despite its record of success, some phenomena are anomalies that may require a modification of the Standard Model. The anomalies include neutrino oscillations, non-locality, and gravity.  相似文献   

13.
A relativistic quantum field theory is presented for finite density problems based on the principle of locality.It is shown that,in addition to the conventional ones,a local approach to the relativistic quantum field theories at both zero and finite densities consistent with the violation of Bell-like inequalities should contain and provide solutions to at least three additional problems,namely,i) the statistical gauge invariance;ii) the dark components of the local observables;and iii)the fermion statistical blocking effects,based upon an asymptotic nonthermal ensemble,An application to models is presented to show the importance of the discussions.  相似文献   

14.
The problems which arise for a relativistic quantum mechanics are reviewed and critically examined in connection with the foundations of quantum field theory. The conflict between the quantum mechanical Hilbert space structure, the locality property and the gauge invariance encoded in the Gauss' law is discussed in connection with the various quantization choices for gauge fields.  相似文献   

15.
We discuss the problems of quantum theory (QT) complicating its merging with general relativity (GR). QT is treated as a general theory of micro-phenomena—a bunch of models. Quantum mechanics (QM) and quantum field theory (QFT) are the most widely known (but, e.g., Bohmian mechanics is also a part of QT). The basic problems of QM and QFT are considered in interrelation. For QM, we stress its nonrelativistic character and the presence of spooky action at a distance. For QFT, we highlight the old problem of infinities. And this is the main point of the paper: it is meaningless to try to unify QFT so heavily suffering of infinities with GR. We also highlight difficulties of the QFT-treatment of entanglement. We compare the QFT and QM based measurement theories by presenting both theoretical and experimental viewpoints. Then we discuss two basic mathematical constraints of both QM and QFT, namely, the use of real (and, hence, complex) numbers and the Hilbert state space. We briefly present non-archimedean and non-hilbertian approaches to QT and their consequences. Finally, we claim that, in spite of the Bell theorem, it is still possible to treat quantum phenomena on the basis of a classical-like causal theory. We present a random field model generating the QM and QFT formalisms. This emergence viewpoint can serve as the basis for unification of novel QT (may be totally different from presently powerful QM and QFT) and GR. (It may happen that the latter would also be revolutionary modified.)  相似文献   

16.
In this paper,we investigate effects of the minimal length on the Schwinger mechanism using the quantum Geld theory(QFT) incorporating the minimal length.We Grst study the Schwinger mechanism for scalar Gelds in both usual QFT and the deformed QFT.The same calculations are then performed in the case of Dirac particles.Finally,we discuss how our results imply for the corrections to the Unruh temperature and the Hawking temperature due to the minimal length.  相似文献   

17.
The EPR experiment is investigated within the abstract language of relativistic quantum physics (relativistic quantum logic). First we show that the principles of reality (R) and locality (L) contradict the validity principle (Q) of quantum physics. A reformulation of this argument is then given in terms of relativistic quantum logic which is based on the principlesR andQ. It is shown that the principleL must be replaced by a convenient relaxation ¯L, by which the contradiction can be eliminated. On the other hand this weak locality principle ¯L does not contradict Einstein causality and is thus in accordance with special relativity.  相似文献   

18.
We provide a new formulation of the Local Friendliness no-go theorem of Bong et al. [Nat. Phys. 16, 1199 (2020)] from fundamental causal principles, providing another perspective on how it puts strictly stronger bounds on quantum reality than Bell’s theorem. In particular, quantum causal models have been proposed as a way to maintain a peaceful coexistence between quantum mechanics and relativistic causality while respecting Leibniz’s methodological principle. This works for Bell’s theorem but does not work for the Local Friendliness no-go theorem, which considers an extended Wigner’s Friend scenario. More radical conceptual renewal is required; we suggest that cleaving to Leibniz’s principle requires extending relativity to events themselves.  相似文献   

19.
One of the central points of quantum information theory is the problem of ultimate security of quantum cryptography; i.e., the security that is due only to the fundamental laws of nature rather than to technical restrictions. It is shown that a relativistic quantum cryptosystem proposed in this paper is ultimately secure against any eavesdropping attempts. The application of relativistic causality makes it possible to simply prove the security of the cryptosystem. Moreover, because the scheme does not involve collective measurements and quantum codes, it can be experimentally implemented even at the current level of optical fiber technologies.  相似文献   

20.
It is argued that the long standing failure to show an uncontroversial, loophole-free, empirical violation of a Bell inequality should be interpreted as a support to local realism. After defining realism and locality, this as relativistic causality, the performed experimental tests of Bells inequalities are commented. It is pointed out that, without any essential modification of quantum mechanics, the theory might be compatible with local realism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号