共查询到20条相似文献,搜索用时 0 毫秒
1.
地基光电系统空间目标探测影响因素分析 总被引:4,自引:1,他引:4
光电系统的探测能力主要受探测天域的亮度、光电设备和探测器本身性能的影响,而探测能力主要是以信噪比来衡量.在综合了上述影响因素基础上,引入目标成像像元数N,给出了探测信噪比的理论公式;分析了背景亮度、系统参量以及像点弥散对探测能力的影响;结合实际情况,给出了目标过境时段的目标探测情况分析,理论分析得到目标在仰角30°左右可以观测,理论分析结果与实验观测基本一致.因此,该理论公式可以定量了解不同天空背景亮度、系统设计参量、各种因素引起的像点弥散对系统探测能力影响的大小,并为系统优化设计与实际工作开展提供一定的科学依据. 相似文献
2.
Object detection is challenging in large-scale images captured by unmanned aerial vehicles (UAVs), especially when detecting small objects with significant scale variation. Most solutions employ the fusion of different scale features by building multi-scale feature pyramids to ensure that the detail and semantic information are abundant. Although feature fusion benefits object detection, it still requires the long-range dependencies information necessary for small objects with significant scale variation detection. We propose a simple yet effective scale enhancement pyramid network (SEPNet) to address these problems. A SEPNet consists of a context enhancement module (CEM) and feature alignment module (FAM). Technically, the CEM combines multi-scale atrous convolution and multi-branch grouped convolution to model global relationships. Additionally, it enhances object feature representation, preventing features with lost spatial information from flowing into the feature pyramid network (FPN). The FAM adaptively learns offsets of pixels to preserve feature consistency. The FAM aims to adjust the location of sampling points in the convolutional kernel, effectively alleviating information conflict caused by the fusion of adjacent features. Results indicate that the SEPNet achieves an AP score of 18.9% on VisDrone, which is 7.1% higher than the AP score of state-of-the-art detectors RetinaNet achieves an AP score of 81.5% on PASCAL VOC. 相似文献
3.
十四五期间,我国渔业总产量预计持续增长,水产品进一步成为消费者重要饮食组成,但因销售者与消费者食品安全知识和操作过程存在差距导致的食品安全事件频频发生。光谱技术因快速、无损、测试重现度高的优点,既体现物体的光谱属性,也体现了样品的空间信息,已成为水产品检测技术的热点,但多聚焦于新鲜度检测。该文综述了近10年来光谱技术在水产品异物残留检测的研究进展,分别从鱼骨检测、掺伪分析、寄生虫检测与重金属检测四方面介绍常见光谱技术应用及进展,包括X射线技术(X-Rays)、可见光成像(VIS)、近红外成像(NIR),高光谱成像(HSI)等,介绍目前存在问题的同时,展望光谱技术在水产品异物残留检测的发展前景:传统检测算法进一步优化,多光谱技术被用于水产品异物残留检测;深度学习在特征提取的巨大优势得以应用,光谱技术在水产品异物残留检测的应用领域研究更加深入;光谱技术与多种检测技术的有机融合成为必然趋势,在线实时检测成为可能。 相似文献
4.
为了稳定而精确地跟踪扩展目标,提取相邻两帧图像中扩展日标的所有直线边缘征,计算两帧中所有直线的相对斜率、相对倾角和相对截距进行匹配来确定跟踪化置.通过计算相邻帧之间交点描述子的欧氏距离找到最佳匹配,计算出所有交点的重点作为跟踪位置来实现扩展目标跟踪.实验中该方法在扩展目标的跟踪中有非常好的表现.其结果表明在不发生太大变形的情况下.都可以比普通的模板匹配跟踪有更好的稳定性和更精确的跟踪位置. 相似文献
5.
6.
为了简化三维物体计算全息数据和加快计算时间,提出了一种三维点云物体频谱获取方法.在分析频谱获取方法模型的基础上,由不同视角的投影图像(视图)与对应的平面波因子相乘积分的方法得到了三维点云物体频谱;介绍了视图获取算法,使用Matlab并行计算得到了一个三维‘鸟’的视图序列;根据实际物体频谱分布情况,采用高阶高斯概率分布减少视图获取数量;通过视图序列得到三维物体的频谱,采用傅里叶逆变换得到物空间内一个平面的复振幅分布,将其衍射一段距离,编码为菲涅尔全息,并进行了模拟再现和实验验证.模拟再现和实验结果表明:只需要原总视图的17.75%可以获得高质量的再现效果,验证了频谱获取方法的可行性及视图获取简化模型的正确性.所获取的三维物体频谱可以通过一定方式编码成多种全息进行三维显示,拓宽了该频谱获取方法的应用范围. 相似文献
7.
为了提高加速鲁棒特征(SURF)算法的实时性和准确性,本文提出了一种结合AGAST角点检测和改进的SURF特征描绘算法。首先利用AGAST角点检测模板检测特征点,再使用增加对角信息的哈尔小波响应来生成特征点的描述子,之后利用特征袋对产生的描述子进行编码并生成新的特征向量,最后利用支持向量机(SVM)对特征向量进行分类,完成识别。本文以SIFT和SURF算法为对照,分别进行不同视角、光照和尺度的识别实验。实验结果表明,本文算法的平均识别率为98.0%、96.9%、97.1%,平均时间分别为66.1 ms、79.3 ms、41.0 ms,在识别率上较优于SURF算法,所耗时间约是SURF算法的1/3。 相似文献
8.
Deep neural networks have been successfully applied in the field of image recognition and object detection, and the recognition results are close to or even superior to those from human beings. A deep neural network takes the activation function as the basic unit. It is inferior to the spiking neural network, which takes the spiking neuron model as the basic unit in the aspect of biological interpretability. The spiking neural network is considered as the third-generation artificial neural network, which is event-driven and has low power consumption. It modulates the process of nerve cells from receiving a stimulus to firing spikes. However, it is difficult to train spiking neural network directly due to the non-differentiable spiking neurons. In particular, it is impossible to train a spiking neural network using the back-propagation algorithm directly. Therefore, the application scenarios of spiking neural network are not as extensive as deep neural network, and a spiking neural network is mostly used in simple image classification tasks. This paper proposed a spiking neural network method for the field of object detection based on medical images using the method of converting a deep neural network to spiking neural network. The detection framework relies on the YOLO structure and uses the feature pyramid structure to obtain the multi-scale features of the image. By fusing the high resolution of low-level features and the strong semantic information of high-level features, the detection precision of the network is improved. The proposed method is applied to detect the location and classification of breast lesions with ultrasound and X-ray datasets, and the results are 90.67% and 92.81%, respectively. 相似文献
9.
连续帧间差分与背景差分相融合的运动目标检测方法 总被引:5,自引:0,他引:5
为了克服背景差分法和帧间差分法的不足,有效提高运动目标检测的准确性、实时性和检测效率,提出了一种将连续帧间差分法与背景差分法相结合的运动目标检测方法.首先通过连续帧间差分法获得连续帧差图像,然后分别通过线性的自适应滤波、非线性的中值滤波获得背景图像进行差分,之后再利用阈值分割技术实现运动目标的增强,从而有效解决背景差分法和帧间差分法中都可能出现的无法检测目标的现象.实验表明,该算法可以有效避免漏检、误检等情况,提高运动目标检测的效率和准确性. 相似文献
10.
11.
提出一种包含去模糊的空间变换区域卷积神经网络的目标检测算法.首先,基于主动毫米波圆柱扫描成像原理对人体进行三维成像(频率24~30 GHz),建立毫米波图像数据集.然后,估计毫米波图像的模糊核,通过卷积去噪网络获得图像先验知识,将其集成到半二次分裂的优化方法中,以实现非盲目去模糊.最后,由定位网络、网格生成器和采样网络三部分组成空间变换网络,将它融入到特征提取网络中,在去模糊后实现目标检测.通过该非盲目去模糊算法得到的图像的峰值信噪比可达27.49 dB,目标检测算法的平均精度可达80.9%.实验结果表明,与现有的先进方法相比,该方法可以有效地提高图像质量和检测精度,为毫米波图像中隐藏危险品的目标检测提供了新的技术支持. 相似文献
12.
针对遥感图像在频率域中的表征,提出了一种基于光谱空间变换的遥感图像目标探测方法。该方法首先利用傅里叶变换,将遥感图像从空域转变到频率域;然后利用频谱能量楔状采样和谐波叠置等手段,将不同频谱能量所表征的目标特征信息分解到不同的高、低频段中,由此获取对应目标特征在频率域中的探测标志;最后结合在频谱能量上具有方向和频带选择性的匹配Gabor滤波器,实现了居民楼地物目标的有效探测。试验结果表明,文章所提出的方法能够较好地探测遥感图像的目标信息,并且具有特定方向上目标检测的能力。 相似文献
13.
14.
15.
16.
针对传统特征光流场跟踪方法中由于误差积累和错误匹配而导致的特征点丢失问题,基于一种新的Harris-SIFT特征点表示方法,提出基于预测帧与关键帧的算法框架,实现了光流场运动估计与局部特征识别相结合的目标跟踪方法.预测帧利用塔式分解和递归算法计算特征点的光流场运动矢量,使用运动矢量直方图获取目标的运动矢量,并剔除误匹配点;当特征点数量小于5个时,关键帧使用Harris-SIFT特征点进行局部特征匹配,利用仿射模型对目标精确定位及姿态修正.实验结果表明,本方法对视频序列中的纹理特征目标跟踪的鲁棒性较好,在背景复杂、目标遮挡或暂时丢失情况下,仍可以继续完成目标的可靠跟踪. 相似文献
17.
针对传统特征光流场跟踪方法中由于误差积累和错误匹配而导致的特征点丢失问题,基于一种新的Harris-SIFT特征点表示方法,提出基于预测帧与关键帧的算法框架,实现了光流场运动估计与局部特征识别相结合的目标跟踪方法.预测帧利用塔式分解和递归算法计算特征点的光流场运动矢量,使用运动矢量直方图获取目标的运动矢量,并剔除误匹配点;当特征点数量小于5个时,关键帧使用Harris-SIFT特征点进行局部特征匹配,利用仿射模型对目标精确定位及姿态修正.实验结果表明,本方法对视频序列中的纹理特征目标跟踪的鲁棒性较好,在背景复杂、目标遮挡或暂时丢失情况下,仍可以继续完成目标的可靠跟踪. 相似文献
18.
With the continuous improvement of people’s health awareness and the continuous progress of scientific research, consumers have higher requirements for the quality of drinking. Compared with high-sugar-concentrated juice, consumers are more willing to accept healthy and original Not From Concentrated (NFC) juice and packaged drinking water. At the same time, drinking category detection can be used for vending machine self-checkout. However, the current drinking category systems rely on special equipment, which require professional operation, and also rely on signals that are not widely used, such as radar. This paper introduces a novel drinking category detection method based on wireless signals and artificial neural network (ANN). Unlike past work, our design relies on WiFi signals that are widely used in life. The intuition is that when the wireless signals propagate through the detected target, the signals arrive at the receiver through multiple paths and different drinking categories will result in distinct multipath propagation, which can be leveraged to detect the drinking category. We capture the WiFi signals of detected drinking using wireless devices; then, we calculate channel state information (CSI), perform noise removal and feature extraction, and apply ANN for drinking category detection. Results demonstrate that our design has high accuracy in detecting drinking category. 相似文献
19.
针对电厂热力系统故障检测和定位准确性低的问题,提出了基于鲁棒输入训练网络(Robust Input-training Network, RITN)的传感器故障检测模型。采用带参数限制项的目标函数对网络进行训练,并在测试目标函数中引入影响因子,增加了模型训练精度,抑制了网络计算过程故障数据对正常值的影响,减小了残差污染,提高了模型准确性。以某300MW电厂热力系统20组测点为对象进行算例分析,通过反复的实验,结果表明,该模型能够更加准确的对非线性系统故障点进行检测和分离,并更加精确重构各变量真实值,验证了该模型用于非线性过程传感器故障检测的有效性和可靠性。 相似文献
20.
The expressway traffic incidents have the characteristics of high harmful, strong destructive and refractory. Incident detection can guarantee smooth operation of the expressway, reduce traffic congestion and avoid secondary accident by informing the accident, detection and treatment timely. In this paper, an incident detection method is proposed using the toll station data that takes into account the traffic ratio at the entrances and crossway in the network. The expressway traffic simulation model is improved and a simulation algorithm is established to describe the movement of the vehicles. A numerical example is experimented on the expressway network of Shandong province. The proposed method can effectively detect the expressway incidents, and dynamically estimate the traffic network states so as to provide advice for the highway management department. 相似文献