首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The dynamics of electron adducts of 2'-deoxynucleotides and oligonucelotides (ODNs) were measured spectroscopically by nanosecond pulse radiolysis. The radical anions of the nucleotides were produced within 10 ns by the reaction of hydrated electrons (e(aq)(-)) and were protonated to form the corresponding neutral radicals. At pH 7.0, the radical anion of deoxythymidine (dT(*-)) was protonated to form the neutral radical dT(H)(*) in the time range of microseconds. The rate constant for the protonation was determined as 1.8 x 10(10) M(-1) s(-1). In contrast, the neutral radical of dC(H)(*) was formed immediately after the pulse, suggesting that the protonation occurs within 10 ns. The transient spectra of excess electrons of the double-stranded ODNs 5'-TAATTTAATAT-3' (AT) and 5'-CGGCCCGGCGC-3' (GC) differed from those of pyrimidine radicals (C and T) and their composite. In contrast, the spectra of the electron adducts of the single-stranded ODNs GC and AT exhibited characteristics of C and T, respectively. These results suggest that, in duplex ODNs, the spectral intermediates of G-C and A-T anions complex were formed. On the microsecond time scale, the subsequent changes in absorbance of the ODN AT had a first-order rate constant of 4 x 10(4) s(-1), reflecting the protonation of T.  相似文献   

2.
The minimal essential section of DNA helices, the dinucleoside phosphate deoxyguanylyl-3',5'-deoxycytidine dimer octahydrate, [dGpdC](2), has been constructed, fully optimized, and analyzed by using quantum chemical methods at the B3LYP/6-31+G(d,p) level of theory. Study of the electrons attached to [dGpdC](2) reveals that DNA double strands are capable of capturing low-energy electrons and forming electronically stable radical anions. The relatively large vertical electron affinity (VEA) predicted for [dGpdC](2) (0.38 eV) indicates that the cytosine bases are good electron captors in DNA double strands. The structure, charge distribution, and molecular orbital analysis for the fully optimized radical anion [dGpdC](2)(·-) suggest that the extra electron tends to be redistributed to one of the cytosine base moieties, in an electronically stable structure (with adiabatic electron affinity (AEA) 1.14 eV and vertical detachment energy (VDE) 2.20 eV). The structural features of the optimized radical anion [dGpdC](2)(·-) also suggest the probability of interstrand proton transfer. The interstrand proton transfer leads to a distonic radical anion [d(G-H)pdC:d(C+H)pdG](·-), which contains one deprotonated guanine anion and one protonated cytosine radical. This distonic radical anion is predicted to be more stable than [dGpdC](2)(·-). Therefore, experimental evidence for electron attachment to the DNA double helices should be related to [d(G-H)pdC:d(C+H)pdG](·-) complexes, for which the VDE might be as high as 2.7 eV (in dry conditions) to 3.3 eV (in fully hydrated conditions). Effects of the polarizable medium have been found to be important for increasing the electron capture ability of the dGpdC dimer. The ultimate AEA value for cytosine in DNA duplexes is predicted to be 2.03 eV in aqueous solution.  相似文献   

3.
The two major UV-induced DNA lesions, the cyclobutane pyrimidine dimers (CPD) and (6-4) pyrimidine-pyrimidone photoproducts, can be repaired by the light-activated enzymes CPD and (6-4) photolyases, respectively. It is a long-standing question how the two classes of photolyases with alike molecular structure are capable of reversing the two chemically different DNA photoproducts. In both photolyases the repair reaction is initiated by photoinduced electron transfer from the hydroquinone-anion part of the flavin adenine dinucleotide (FADH(-)) cofactor to the photoproduct. Here, the state-of-the-art XMCQDPT2-CASSCF approach was employed to compute the excitation spectra of the respective active site models. It is found that protonation of His365 in the presence of the hydroquinone-anion electron donor causes spontaneous, as opposed to photoinduced, coupled proton and electron transfer to the (6-4) photoproduct. The resulting neutralized biradical, containing the neutral semiquinone and the N3'-protonated (6-4) photoproduct neutral radical, corresponds to the lowest energy electronic ground-state minimum. The high electron affinity of the N3'-protonated (6-4) photoproduct underlines this finding. Thus, it is anticipated that the (6-4) photoproduct repair is assisted by His365 in its neutral form, which is in contrast to the repair mechanisms proposed in the literature. The repair via hydroxyl group transfer assisted by neutral His365 is considered. The repair involves the 5'base radical anion of the (6-4) photoproduct which in terms of electronic structure is similar to the CPD radical anion. A unified model of the CPD and (6-4) photoproduct repair is proposed.  相似文献   

4.
Photoinduced reduction of thymine glycol in oligodeoxynucleotides was investigated using either a reduced form of flavin adenine dinucleotide (FADH(-)) as an intermolecular electron donor or covalently linked phenothiazine (PTZ) as an intramolecular electron donor. Intermolecular electron donation from photoexcited flavin (FADH(-)) to free thymidine glycol generated thymidine in high yield, along with a small amount of 6-hydroxy-5,6-dihydrothymidine. In the case of photoreduction of 4-mer long single-stranded oligodeoxynucleotides containing thymine glycol by *FADH(-), the restoration yield of thymine was varied depending on the sequence of oligodeoxynucleotides. Time-resolved spectroscopic study on the photoreduction by laser-excited N,N-dimethylaniline (DMA) suggested elimination of a hydroxyl ion from the radical anion of thymidine glycol with a rate constant of approximately 10(4) s(-1) generates 6-hydroxy-5,6-dihydrothymidine (6-HOT(*)) as a key intermediate, followed by further reduction of 6-HOT(*) to thymidine or 6-hydroxy-5,6-dihydrothymdine (6-HOT). On the other hand, an excess electron injected into double-stranded DNA containing thymine glycol was not trapped at the lesion but was further transported along the duplex. Considering redox properties of the nucleobases and PTZ, competitive excess electron trapping at pyrimidine bases (thymine, T and cytosine, C) which leads to protonation of the radical anion (T(-)(*), C(-)(*)) or rapid back electron transfer to the radical cation of PTZ (PTZ(+)(*)), is presumably faster than elimination of the hydroxyl ion from the radical anion of thymine glycol in DNA.  相似文献   

5.
用AM1半经验方法,优化了吲哚和苯酚中性分子、正离子自由基和负离子自由基的几何构型。用线性反应坐标近似和溶剂效庆的类导体屏蔽模型(COSMO)构造吲哚正离子和苯酚中性分子间电子转移的双势阱,用以估算多肽链中色氨酸和酪氨酸之间的电子转移的反应热和内重组能。优化TrpH-(Pro)n-TyrOH(n=0-3)多肽模型分子的结构和构象,用能级分裂因子的极小值方法计算了这些多肽体系的电子转移矩阵元。  相似文献   

6.
DNA damage by attachment of low-energy secondary electrons is a very interesting and important mechanism. Electron capture and subsequent base release are thought to be the elementary steps of this mechanism. The process of the N1-glycosidic bond breaking of anion radicals of pyrimidine nucleosides, specifically the 2'-deoxyribothymidine (dT) and 2'-deoxyribocytidine (dC) anions, has been investigated theoretically at the B3LYP/DZP++ level of theory. The release of nucleobases by the attachment of low-energy electrons depends on the formation of a stable anion radical of the nucleoside. The lower bond-breaking activation energy and the higher vertical electron detachment energy for dT enables the heterolytic cleavage of the N1-glycosidic bond. However, with the higher bond-breaking activation energy and the lower vertical electron detachment energy for dC, the release of cytosine might be impractical when the incident electrons have high kinetic energy. Furthermore, the release of cytosine would have a quantum yield much lower than that of dT when the incident electrons have lower kinetic energy. This study also demonstrates the importance of the proton at O5' of 2'-deoxyribose in the base release process. Extending this investigation from dT to dC advances the insight into the mechanism of the N1-glycosidic bond-breaking process. The information from this extensive investigation should be valuable for further experimental studies of cytosine release in irradiated DNA.  相似文献   

7.
Dioxygen accelerates back electron transfer (BET) processes between a fullerene radical anion (C60) and a radical cation of zinc porphyrin (ZnP) in photolytically generated ZnP.+-C60.- and ZnP.+-H2P-C60.- radical ion pairs. The rate constant of BET increases linearly with increasing oxygen concentration without, however, forming reactive oxygen species, such as singlet oxygen or superoxide anion. When ferrocene (Fc) is used as a terminal electron donor moiety instead of ZnP (i.e., Fc-ZnP-C60), no catalytic effects of dioxygen were, however, observed for the BET in Fc+-ZnP-C60.-, that is, from C60.- to the ferricenium ion. In the case of ZnP-containing C60 systems, the partial coordination of O2 to ZnP.+ facilitates an intermolecular electron transfer (ET) from C60.- to O2. This rate-determining ET step is followed by a rapid intramolecular ET from O2.- to ZnP.+ in the corresponding O2.--ZnP.+ complex and hereby regenerating O2. In summary, O2 acts as a novel catalyst in accelerating the BET of the C60.--ZnP.+ radical ion pairs.  相似文献   

8.
Type zero copper is a hard-ligand analogue of the classical type 1 or blue site in copper proteins that function as electron transfer (ET) agents in photosynthesis and other biological processes. The EPR spectroscopic features of type zero Cu(II) are very similar to those of blue copper, although lacking the deep blue color, due to the absence of thiolate ligation. We have measured the rates of intramolecular ET from the pulse radiolytically generated C3-C26 disulfide radical anion to the Cu(II) in both type zero C112D/M121L and type 2 C112D Pseudomonas aeruginosa azurins in pH 7.0 aqueous solutions between 8 and 45 °C. We also have obtained rate/temperature (10-30 °C) profiles for ET reactions between these mutants and the wild-type azurin. Analysis of the rates and activation parameters for both intramolecular and intermolecular ET reactions indicates that the type zero copper reorganization energy falls in a range (0.9-1.1 eV) slightly above that for type 1 (0.7-0.8 eV), but substantially smaller than that for type 2 (>2 eV), consistent with XAS and EXAFS data that reveal minimal type zero site reorientation during redox cycling.  相似文献   

9.
After the separation of the donor, the acceptor, and the σ-type bridge from the π-σ-π system, the geometries of biphenyl, biphenyl anion radical, naphthalene, and naphthalene anion radical are optimized, and then the reorganization energy for the intermolecular electron transfer (ET) at the levels of HF/4-31G and HF/DZP is calculated. The ET matrix elements of the self-exchange reactions of theπ-σ-π systems have been calculated by means of both the direct calculation based on the variational principle, and the transition energy between the molecular orbitals at the linear coordinateR = 0.5. For the cross reactions, the ET matrix element and the geometry of the transition state are determined by searching the minimum energy splitting Δmin along the reaction coordinate. In the evaluation of the solvent reorganization energy of the ET in solution, the Marcus’ two- sphere model has been invoked. A few of ET rate constants for the intramolecular ET reactions for the π-σ-π systems, which contain the biphenylyl as the donor and both biphenylyl and naphthyl as the acceptor, have been obtained. Project supported by the National Natural Science Foundation of China (Grant Nos. 29706104 and 29573112), the State Key Laboratory of Theoretical and Computational Chemistry of Jilin University.  相似文献   

10.
DNA duplexes containing an N,N,N',N'-tetramethyl-1,5-diaminonaphthalene analogue and 5-bromo-2'-deoxyuridine (BrdU) provide a readily accessible system for investigating excess electron transfer in DNA. Photoexcitation of the aromatic amine (lambda > 335 nm) induces reductive electron transfer as observed by strand cleavage adjacent to the BrdU residue. The weak exponential distance dependence (0.3 A-1) of electron transfer determined for this system of mixed dA-T and dG-dC base pairs suggests that thermally activated electron hopping is competitive with proton transfer within the dG.dC radical anion. The UV-dependent transfer of excess electrons and subsequent strand cleavage proceeds equivalently under anaerobic and aerobic conditions and is not sensitive to e-(aq) or hydroxyl radical trapping agents.  相似文献   

11.
We present a combined experimental and computational approach to the modeling and prediction of reactivity in multistep processes of heterogeneous electron transfer. The approach is illustrated by the study of a Robson-type binuclear complex (-Cu(II)-Cu(II)-) undergoing four-electron reduction in aqueous media and water-acetonitrile mixtures. The observed effects of solvent, pH, buffer capacity, and supporting electrolyte are discussed in the framework of a general reaction scheme involving two main routes; one of them includes protonation of intermediate species. The main three problems are addressed on the basis of modern charge transfer theory: (1) the effect of the nature of reactant and intermediate species (protonated/deprotonated, bare or associated with supporting anion/solvent molecule) on the standard redox potential, the electronic transmission coefficient, and the intramolecular reorganization; (2) possible effect of protonation on the shape of the reaction free energy surfaces which are built using the Anderson Hamiltonian; (3) electron transfer across an adsorbed chloride anion. Quantum chemical calculations were performed at the density functional theory level.  相似文献   

12.
The 2-methyl-1,4-naphthoquinone (MQ) sensitized photooxidation of nucleic acid derivatives has been studied by laser flash photolysis and steady state methods. Thymine and thymidine, as well as other DNA model compounds, quench triplet MQ by electron transfer to give MQ radical anions and pyrimidine or purine radical cations. Although the pyrimidine radical cations cannot be directly observed by flash photolysis, the addition of N,N,N',N'-tetramethyl-1,4-phenylenediamine (TMPD) results in the formation of the TMPD radical cation via scavenging of the pyrimidine radical cation. The photooxidation products for thymine and thymidine are shown to result from subsequent chemical reactions of the radical cations in oxygenated aqueous solution. The quantum yield for substrate loss at limiting substrate concentrations is 0.38 for thymine and 0.66 for thymidine. The chemistry of the radical cations involves hydration by water leading to C(6)-OH adduct radicals of the pyrimidine and deprotonation from the N(1) position in thymine and the C(5) methyl group for thymidine. Superoxide ions produced via quenching of the quinone radical anion with oxygen appear to be involved in the formation of thymine and thymidine hydroperoxides and in the reaction with N(1)-thyminyl radicals to regenerate thymine. The effects of pH were examined in the range pH 5-8 in both the presence and absence of superoxide dismutase. Initial C(6)-OH thymine adducts are suggested to dehydrate to give N(1)-thyminyl radicals.  相似文献   

13.
cis-syn Cyclobutane pyrimidine dimers, major UV-induced DNA lesions, are efficiently repaired by DNA photolyases. The key step of the repair reaction is a light-driven electron transfer from the FADH(-) cofactor to the dimer; the resulting radical anion splits spontaneously. Whether the splitting reaction requires considerable activation energy is still under dispute. Recent reports show that the splitting reaction of a dimer radical anion has a significant activation barrier (0.45 eV), and so photolyases have to provide considerable energy. However, these results contradict observations that cis-syn dimer radical anions split into monomers at -196 degrees C, and that the full process of DNA photoreactivation was fast (1.5-2 ns). To investigate the activation energies of dimer radical anions, three model compounds 1-3 were prepared. These include a covalently linked cyclobutane thymine dimer and a tryptophan residue (1) or a flavin unit (3), and the covalently linked uracil dimer and tryptophan (2). Their properties of photosensitised splitting of the dimer units by tryptophan or flavin unit were investigated over a large temperature range, -196 to 70 degrees C. The activation energies were obtained from the temperature dependency of splitting reactions for 1 and 2, 1.9 kJ mol(-1) and 0.9 kJ mol(-1) for the thymine and uracil dimer radical anions, respectively. These values are much lower than that obtained for E. coli photolyase (0.45 eV), and are surmountable at -196 degrees C. The activation energies provide support for previous observations that repair efficiencies for uracil dimers are higher than thymine dimers, both in enzymatic and model systems. The mechanisms of highly efficient enzymatic DNA repair are discussed.  相似文献   

14.
The one-electron reduction of bis[1-(2',3',5'-tri-O-acetylribosyl)uracil-4-yl] disulfide, initiated by hydrated electrons in a radiation chemical study, has been shown to yield 1-(2',3',5'-tri-O-acetylribosyl)-4-thiouracil as a stable molecular product. The reduction reaction leads, in the first instance, to a transient, albeit remarkably stable disulfide radical anion. This is characterized by a 2-center-3-electron bond with two bonding sigma-electrons and an antibonding sigma*-electron in the sulfur-sulfur bridge, (-S therefore S-)(-). It receives its stability from a sandwich-structure with the two uracilyl moieties facing each other (possibly further assisted by the 2',3',5'-tri-O-acetylribosyl substituents). A considerable lengthening of the original disulfide bridge from 2.02 to 2.73 A in the radical anion seems to facilitate the interaction of the heterocycles and leads to a gain in stabilization energy of 24 and 33 kcal/mol (100 and 140 kJ/mol) as evaluated by UMP2/cc-pVTZ and UMP2/cc-pVDZ calculations, respectively. The (-S therefore S-)(-) bonded radical anion shows a broad optical absorption band with lambdamax=450 nm, epsilonmax=6000 M(-1) cm(-1), and a half-width of 1.0 eV. It exists in equilibrium with the conjugated 1-(2',3',5'-tri- O-acetylribosyl)uracil-4-yl thiyl radical -S(*), and the corresponding thiolate, -S(-). The rate determining step for the disappearance of the disulfide radical anion appears to be protonation of both the radical anion and the free thiolate by reaction with H(+)aq. Absolute rate constants have been measured for these protonation processes, for the formation of the stable thiouridine product, and for the electron transfer from the disulfide radical anion to molecular oxygen. With the (-S therefore S-)(-) <--> -S(*) + -S(-) equilibrium lying very much on the left-hand side, the reduced disulfide system exhibits predominantly reducing properties whereas any oxidizing property of the conjugated thiyl radical has only little if any chance to materialize. Besides attaching directly to the disulfide bridge, the hydrated electrons react also, with about equal efficiency, with the uracil moiety of the investigated compound. This leads to a structurally totally different and electronically distinguishable species than that with the reduced disulfide bridge. In particular, there is no face-to-face interaction between the two heterocyclic moieties and no increased electron density in the S-S bond. The C-centered radicals resulting from the reduction of the uracil and possibly also generated from the ribosyl moieties initiate further cleavage of the S-S bond and thus contribute to the formation of thiouridine. The overall yield of the latter, as determined from steady-state gamma-radiolysis, indicates a small chain process (G=1.54 micromol/J). Possible mechanisms are discussed.  相似文献   

15.
Steady state fluorescence emission and transient absorption spectra of 9-fluorenone (9FL) were measured in the presence of 5-hydroxyindole (5HI) in highly polar acetonitrile (ACN) environment at ambient temperature. Cyclic voltammetry measurements demonstrate that ground state 5HI as a donor could take part in highly exothermic electron transfer (ET) reactions with excited 9FL, which should serve as electron acceptor. From the transient absorption measurements it is inferred that in geminate ion-pair (GIP) (or contact ion pair), formed initially due to photoinduced ET, the decay of this contact ion-pair occurs not only through ion recombination (back electron transfer to ground state of reactants), but through the other processes also such as proton-transfer (hydrogen abstraction) from radical cation to anion and separation of ion-pair producing the free ions. From the computed reorganisation energy parameter (λ) and experimentally observed - ET 0 values it is hinted that there is a possibility that highly exothermic forward electron transfer reactions in the singlet stateS 1 occur, within present reacting systems, in Marcus inverted region. Back transfer seems to follow the same path. Investigations with similar other reacting systems are underway.  相似文献   

16.
R.N. van der Neut 《Tetrahedron》1975,31(20):2547-2549
The protonation of the radical anion produced as an intermediate by electron transfer to 1,3-dimethylpropadiene is studied by calculating the electrostatic molecular potential to which higher order perturbation terms are added (induction energy). The preferred protonation site is at the central carbon atom, producing a planar allyl radical, in agreement with experimental evidence. A different conclusion is reached if the induction energy is neglected.  相似文献   

17.
EPR spectra show that one-electron reduction of bis(3-phenyl-6,6-(trimethylsilyl)phosphinine-2-yl)dimethylsilane (1) on an alkali mirror leads to a radical anion that is localized on a single phosphinine ring, whereas the radical anion formed from the same reaction in the presence of cryptand or from an electron transfer with sodium naphthalenide is delocalized on the two phosphinine rings. Density functional theory (DFT) calculations show that in the last species the unpaired electron is mainly confined in a loose P-P bond (3.479 A), which results from the overlap of two phosphorus p orbitals. In contrast, as attested by X-ray spectroscopy, the P-P distance in neutral 1 is large (5.8 A). As shown by crystal structure analysis, addition of a second electron leads to the formation of a classical P-P single bond (P-P 2.389 A). Spectral modifications induced by the presence of cryptand or by a change in the reaction temperature are consistent with the formation of a tight ion pair that stabilizes the radical structure localized on a single phosphinine ring. It is suggested that the structure of this pair hinders internal rotation around the C-Si bonds and prevents 1 from adopting a conformation that shortens the intramolecular P-P distance. The ability of the phosphinine radical anion to reversibly form weak P-P bonds with neutral phosphinines in the absence of steric hindrance is confirmed by EPR spectra obtained for 2,6-bis(trimethylsilyl)-3-phenylphosphinine (2). Moreover, as shown by NMR spectroscopy, in this system, which contains only one phosphinine ring, further reduction leads to an intermolecular reaction with the formation of a classical P-P bond.  相似文献   

18.
To elucidate electron attachment induced damage in the DNA double helix, electron attachment to the 2'-deoxyribonucleoside pair dG:dC has been studied with the reliably calibrated B3LYP/DZP++ theoretical approach. The exploration of the potential energy surface of the neutral and anionic dG:dC pairs predicts a positive electron affinity for dG:dC [0.83 eV for adiabatic electron affinity (EAad) and 0.16 eV for vertical electron affinity (VEA)]. The substantial increases in the electron affinity of dG:dC (by 0.50 eV for EAad and 0.23 eV for VEA) compared to those of the dC nucleoside suggest that electron attachment to DNA double helices should be energetically favored with respect to the single strands. Most importantly, electron attachment to the dC moiety in the dG:dC pair is found to be able to trigger the proton transfer in the dG:dC- pair, surprisingly resulting in the lower energy distonic anionic complex d(G-H)-:d(C+H).. The negative charge for the latter system is located on the base of dC in the dG:dC- pair, while it is transferred to d(G-H) in d(G-H)-:d(C+H)., accompanied by the proton transfer from N1(dG) to N3(dC). The low energy barrier (2.4 kcal/mol) for proton transfer from dG to dC- suggests that the distonic d(G-H)-:d(C+H). pair should be one of the important intermediates in the process of electron attachment to DNA double helices. The formation of the neutral nucleoside radical d(C+H). is predicted to be the direct result of electron attachment to the DNA double helices. Since the neutral radical d(C+H). nucleotide is the key element in the formation of this DNA lesion, electron attachment might be one of the important factors that trigger the formation of abasic sites in DNA double helices.  相似文献   

19.
Thermal intramolecular electron transfer from the ferrocene (Fc) to naphthoquinone (NQ) moiety occurs efficiently by the addition of metal triflates (M(n)()(+): Sc(OTf)(3), Y(OTf)(3), Eu(OTf)(3)) to an acetonitrile solution of a ferrocene-naphthoquinone (Fc-NQ) linked dyad with a flexible methylene and an amide spacer, although no electron transfer takes place in the absence of M(n)()(+). The resulting semiquinone radical anion (NQ(*)(-)) is stabilized by the strong binding of M(n)()(+) with one carbonyl oxygen of NQ(*)(-)( )()as well as hydrogen bonding between the amide proton and the other carbonyl oxygen of NQ(*)(-). The high stability of the Fc(+)()-NQ(*)(-)/M(n)()(+)() complex allows us to determine the driving force of electron transfer by the conventional electrochemical method. The one-electron reduction potential of the NQ moiety of Fc-NQ is shifted to a positive direction with increasing concentration of M(n)()(+), obeying the Nernst equation, whereas the one-electron oxidation potential of the Fc moiety remains the same. The driving force dependence of the observed rate constant (k(ET)) of M(n)()(+)-promoted intramolecular electron transfer is well evaluated in light of the Marcus theory of electron transfer. The driving force of electron transfer increases with increasing concentration of M(n)()(+) [M(n)()(+)], whereas the reorganization energy of electron transfer decreases with increasing [M(n)()(+)] from a large value which results from the strong binding between NQ(*)(-) and M(n)()(+).  相似文献   

20.
Density functional theory was applied to the investigation of photoinduced electron transfer (ET) and the absorption spectrum for a bis-naphthalimide spermine conjugate. The multichannel feature of ET excitation in this system was focused on because four groups may act as electron donors and acceptors. The segment in this conjugate, N-(N-methylpropyl)-1,8-naphthalimide, which contains one donor and acceptor pair, was studied at first. Through theoretical calculation, the absorption band at 340 nm was assigned to the pi-->pi* transition. For the whole system involving four chromophores, this work suggested three types of ET. From the theoretical investigation, the naphthalimide radical anion turned out to be formed via intramolecular ET between the two terminal naphthalimide groups, rather than via the electron transfer between the dialkylamine moiety and the naphthalimide one. Furthermore, the electronic coupling matrix elements according to the generalized Mulliken-Hush theory were estimated and the detailed analyses showed that the strongest absorption was due to the local excitation of the naphthalimide chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号