首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. We derive analytic bounds on the convergence factors associated with block relaxation methods for solving the discrete two-dimensional convection-diffusion equation. The analysis applies to the reduced systems derived when one step of block Gaussian elimination is performed on red-black ordered two-cyclic discretizations. We consider the case where centered finite difference discretization is used and one cell Reynolds number is less than one in absolute value and the other is greater than one. It is shown that line ordered relaxation exhibits very fast rates of convergence. Received March 3, 1992/Revised version received July 2, 1993  相似文献   

2.
Summary. We consider the convergence of Orthomin(k) on singular and inconsistent linear systems. Criteria for the breakdown of Orthomin(k) are discussed and analyzed. Moreover, necessary and sufficient conditions for the convergence of Orthomin(k) for any right hand side are given, and a rate of convergence is provided as well. Finally, numerical experiments are shown to confirm the convergence theorem. Received April 1, 1995 / Revised version received October 1, 1997 / Published online July 12, 2000  相似文献   

3.
Summary. Hybrid methods for the solution of systems of linear equations consist of a first phase where some information about the associated coefficient matrix is acquired, and a second phase in which a polynomial iteration designed with respect to this information is used. Most of the hybrid algorithms proposed recently for the solution of nonsymmetric systems rely on the direct use of eigenvalue estimates constructed by the Arnoldi process in Phase I. We will show the limitations of this approach and propose an alternative, also based on the Arnoldi process, which approximates the field of values of the coefficient matrix and of its inverse in the Krylov subspace. We also report on numerical experiments comparing the resulting new method with other hybrid algorithms. Received May 27, 1993 / Revised version received November 14, 1994  相似文献   

4.
Summary. Large, sparse nonsymmetric systems of linear equations with a matrix whose eigenvalues lie in the right half plane may be solved by an iterative method based on Chebyshev polynomials for an interval in the complex plane. Knowledge of the convex hull of the spectrum of the matrix is required in order to choose parameters upon which the iteration depends. Adaptive Chebyshev algorithms, in which these parameters are determined by using eigenvalue estimates computed by the power method or modifications thereof, have been described by Manteuffel [18]. This paper presents an adaptive Chebyshev iterative method, in which eigenvalue estimates are computed from modified moments determined during the iterations. The computation of eigenvalue estimates from modified moments requires less computer storage than when eigenvalue estimates are computed by a power method and yields faster convergence for many problems. Received May 13, 1992/Revised version received May 13, 1993  相似文献   

5.
Summary. Given a nonsingular matrix , and a matrix of the same order, under certain very mild conditions, there is a unique splitting , such that . Moreover, all properties of the splitting are derived directly from the iteration matrix . These results do not hold when the matrix is singular. In this case, given a matrix and a splitting such that , there are infinitely many other splittings corresponding to the same matrices and , and different splittings can have different properties. For instance, when is nonnegative, some of these splittings can be regular splittings, while others can be only weak splittings. Analogous results hold in the symmetric positive semidefinite case. Given a singular matrix , not for all iteration matrices there is a splitting corresponding to them. Necessary and sufficient conditions for the existence of such splittings are examined. As an illustration of the theory developed, the convergence of certain alternating iterations is analyzed. Different cases where the matrix is monotone, singular, and positive (semi)definite are studied. Received September 5, 1995 / Revised version received April 3, 1996  相似文献   

6.
Summary. Using the theory of nonnegative matrices and regular splittings, exact convergence and divergence domains of the Unsymmetric Successive Overrelaxation (USSOR) method, as it pertains to the class of Generalized Consistently Ordered (GCO) matrices, are determined. Our recently derived upper bounds, for the convergence of the USSOR method, re also used as effective tools. Received October 17, 1993 / Revised version received December 19, 1994  相似文献   

7.
On convergence rates of inexact Newton regularizations   总被引:1,自引:0,他引:1  
Summary. REGINN is an algorithm of inexact Newton type for the regularization of nonlinear ill-posed problems [Inverse Problems 15 (1999), pp. 309–327]. In the present article convergence is shown under weak smoothness assumptions (source conditions). Moreover, convergence rates are established. Some computational illustrations support the theoretical results. Received March 12, 1999 / Published online October 16, 2000  相似文献   

8.
Summary. An adaptive Richardson iteration method is described for the solution of large sparse symmetric positive definite linear systems of equations with multiple right-hand side vectors. This scheme ``learns' about the linear system to be solved by computing inner products of residual matrices during the iterations. These inner products are interpreted as block modified moments. A block version of the modified Chebyshev algorithm is presented which yields a block tridiagonal matrix from the block modified moments and the recursion coefficients of the residual polynomials. The eigenvalues of this block tridiagonal matrix define an interval, which determines the choice of relaxation parameters for Richardson iteration. Only minor modifications are necessary in order to obtain a scheme for the solution of symmetric indefinite linear systems with multiple right-hand side vectors. We outline the changes required. Received April 22, 1993  相似文献   

9.
Summary. We study the convergence of two-stage iterative methods for solving symmetric positive definite (spd) systems. The main tool we used to derive the iterative methods and to analyze their convergence is the diagonally compensated reduction (cf. [1]). Received December 11, 1997 / Revised version received March 25, 1999 / Published online May 30, 2001  相似文献   

10.
Summary. This paper investigates the convergence of the Lanczos method for computing the smallest eigenpair of a selfadjoint elliptic differential operator via inverse iteration (without shifts). Superlinear convergence rates are established, and their sharpness is investigated for a simple model problem. These results are illustrated numerically for a more difficult problem. Received March 8, 1996  相似文献   

11.
Summary. This paper investigates the comparisons of asymptotic rates of convergence of two iteration matrices. On the basis of nonnegative matrix theory, comparisons between two nonnegative splittings and between two parallel multisplitting methods are derived. When the coefficient matrix A is Hermitian positive (semi)definite, comparison theorems about two P-regular splittings and two parallel multisplitting methods are proved. Received April 4, 1998 / Revised version received October 18, 1999 / Published online November 15, 2001  相似文献   

12.
Summary. In this work we present a novel class of semi-iterative methods for the Drazin-inverse solution of singular linear systems, whether consistent or inconsistent. The matrices of these systems are allowed to have arbitrary index and arbitrary spectra in the complex plane. The methods we develop are based on orthogonal polynomials and can all be implemented by 4-term recursion relations independently of the index. We give all the computational details of the associated algorithms. We also give a complete convergence analysis for all methods. Received June 28, 2000 / Revised version received May 23, 2001 / Published online January 30, 2002  相似文献   

13.
Summary. A breakdown (due to a division by zero) can arise in the algorithms for implementing Lanczos' method because of the non-existence of some formal orthogonal polynomials or because the recurrence relationship used is not appropriate. Such a breakdown can be avoided by jumping over the polynomials involved. This strategy was already used in some algorithms such as the MRZ and its variants. In this paper, we propose new implementations of the recurrence relations of these algorithms which only need the storage of a fixed number of vectors, independent of the length of the jump. These new algorithms are based on Horner's rule and on a different way for computing the coefficients of the recurrence relationships. Moreover, these new algorithms seem to be more stable than the old ones and they provide better numerical results. Numerical examples and comparisons with other algorithms will be given. Received September 2, 1997 / Revised version received July 24, 1998  相似文献   

14.
This paper is concerned with numerical methods for a finite difference system of reaction-diffusion-convection equation under nonlinear boundary condition. Various monotone iterative methods are presented, and each of these methods leads to an existence-comparison theorem as well as a computational algorithm for numerical solutions. The monotone property of the iterations gives improved upper and lower bounds of the solution in each iteration, and the rate of convergence of the iterations is either quadratic or nearly quadratic depending on the property of the nonlinear function. Application is given to a model problem from chemical engineering, and some numerical results, including a test problem with known analytical solution, are presented to illustrate the various rates of convergence of the iterations. Received November 2, 1995 / Revised version received February 10, 1997  相似文献   

15.
Summary. We propose an algorithm for the numerical solution of large-scale symmetric positive-definite linear complementarity problems. Each step of the algorithm combines an application of the successive overrelaxation method with projection (to determine an approximation of the optimal active set) with the preconditioned conjugate gradient method (to solve the reduced residual systems of linear equations). Convergence of the iterates to the solution is proved. In the experimental part we compare the efficiency of the algorithm with several other methods. As test example we consider the obstacle problem with different obstacles. For problems of dimension up to 24\,000 variables, the algorithm finds the solution in less then 7 iterations, where each iteration requires about 10 matrix-vector multiplications. Received July 14, 1993 / Revised version received February 1994  相似文献   

16.
Summary. Discretisation of the classical Stokes problem gives rise to symmetric indefinite matrices with eigenvalues which, in a precise way, are not symmetric about the origin, but which do depend on a mesh size parameter. Convergence estimates for the Conjugate Residual or Minimum Residual iterative solution of such systems are given by best minimax polynomial approximations on an inclusion set for the eigenvalues. In this paper, an analytic convergence estimate for such problems is given in terms of an asymptotically small mesh size parameter. Received November 16, 1993 / Revised version received August 2, 1994  相似文献   

17.
Asynchronous two-stage iterative methods   总被引:9,自引:0,他引:9  
Summary. Parallel block two-stage iterative methods for the solution of linear systems of algebraic equations are studied. Convergence is shown for monotone matrices and for -matrices. Two different asynchronous versions of these methods are considered and their convergence investigated. Received September 7, 1993 / Revised version received April 21, 1994  相似文献   

18.
Summary. A quadratic convergence bound for scaled Jacobi iterates is proved provided the initial symmetric positive definite matrix has simple eigenvalues. The bound is expressed in terms of the off-norm of the scaled initial matrix and the minimum relative gap in the spectrum. The obtained result can be used to predict the stopping moment in the two-sided and especially in the one-sided Jacobi method. Received October 31, 1997 / Revised version received March 8, 1999 / Published online July 12, 2000  相似文献   

19.
Summary. Two block monotone iterative schemes for a nonlinear algebraic system, which is a finite difference approximation of a nonlinear elliptic boundary-value problem, are presented and are shown to converge monotonically either from above or from below to a solution of the system. This monotone convergence result yields a computational algorithm for numerical solutions as well as an existence-comparison theorem of the system, including a sufficient condition for the uniqueness of the solution. An advantage of the block iterative schemes is that the Thomas algorithm can be used to compute numerical solutions of the sequence of iterations in the same fashion as for one-dimensional problems. The block iterative schemes are compared with the point monotone iterative schemes of Picard, Jacobi and Gauss-Seidel, and various theoretical comparison results among these monotone iterative schemes are given. These comparison results demonstrate that the sequence of iterations from the block iterative schemes converges faster than the corresponding sequence given by the point iterative schemes. Application of the iterative schemes is given to a logistic model problem in ecology and numerical ressults for a test problem with known analytical solution are given. Received August 1, 1993 / Revised version received November 7, 1994  相似文献   

20.
Summary. Systems of integer linear (Diophantine) equations arise from various applications. In this paper we present an approach, based upon the ABS methods, to solve a general system of linear Diophantine equations. This approach determines if the system has a solution, generalizing the classical fundamental theorem of the single linear Diophantine equation. If so, a solution is found along with an integer Abaffian (rank deficient) matrix such that the integer combinations of its rows span the integer null space of the cofficient matrix, implying that every integer solution is obtained by the sum of a single solution and an integer combination of the rows of the Abaffian. We show by a counterexample that, in general, it is not true that any set of linearly independent rows of the Abaffian forms an integer basis for the null space, contrary to a statement by Egervary. Finally we show how to compute the Hermite normal form for an integer matrix in the ABS framework. Received July 9, 1999 / Revised version received May 8, 2000 / Published online May 4, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号