首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ab initio calculations have been performed to study on the molecular structures and the vibrational levels of the low-lying ionic states (2A2 and2B1) of furan. The equilibrium molecular structures and vibrational modes of these states are presented. The theoretical ionization intensity curves including the vibrational structures of the low-lying two ionic states are also presented and compared with the photoelectron spectrum. A number of new assignments of the photoelectron spectra are proposed.  相似文献   

2.
3.
 Ab initio calculations have been performed to study the molecular structures and vibrational levels of the four low-lying ionic states (1, 22Π, and 1, 22Σ+) of carbonyl sulfide. The global regions of the potential-energy surfaces have been obtained by multireference single and double excitation configuration interaction calculations. Vibrational calculations using explicit vibrational Hamiltonians have been used for vibrational analysis. The equilibrium molecular structures and a vibrational analysis of the four ionic states are presented. The theoretical ionization intensity curves including the vibrational structures of the ionic states are also presented and are compared with the photoelectron spectrum. Received: 20 January 2001 / Accepted: 22 August 2001 / Published online: 30 October 2001  相似文献   

4.
An analysis of the electronic correlation structures by means of the charge and spin correlation functions is carried out for full CI wave functions of four, five, and six membered conjugated π systems described by the Pariser–Parr–Pople Hamiltonian. The low-lying states of these systems are classified as covalent (CV ) and ionic (IN ) states depending on whether the probability of finding two electrons simultaneously at the same position is small or large. It is found that many of excited CV states, the typical ones of which are the 21Ag state of linear π systems, have stronger CV character than the ground CV state, and their spin coupling structures are different from each other as well as from that of the ground CV state. The spin coupling structure in the ground CV state has an “antiferromagnetic” spin arrangement in favor of antiparallel coupling between nearest neighbor spins while in excited CV states the extent of the antiparallel spin coupling between nearest neighbor sites is decreased. IN states, which are less common for low-lying states than CV ones, are also found to have characteristic modulations in the charge correlation. In particular, the charge correlations in the lowest singlet IN states, 11Bu of linear π systems, 11B2g of cyclobutadiene and 11B1U of benzene, are alternating.  相似文献   

5.
Ab initio extensive configuration interaction calculations were carried out on the π-electron states of benzene. Among the three π → π*(e1g → e2u) singlet states, 1B2u(S1). 1B1u(S2), and 1E1u(S3), the π* orbital was found to be velence-like in S1 and S2, but diffuse in S3. All three corresponding triplet states, 3B1u(T1) and 3B2u(T3), were found to be valence-like. The valence-like 1E2g(S4) and 3E2g(T4) states were found to have significant double-excitation character, and were estimated to lie somewhat above S3 and T3, respectively. No low-lying S5 and T5 states were found. Several low-lying Rydberg states were identified.  相似文献   

6.
The equilibrium geometries, excitation energies, force constants, and vibrational frequencies of the low-lying electronic states X2B1, 2A1, 2B2, and 2A2 of the PF2 radical have been calculated at the MRSDCI level with a double zeta plus polarization basis set. Our calculated geometry, force constants, and vibrational frequencies for the X2B1 state are in good agreement with experimental data. The electronic transition moments, oscillator strengths for the 2A1X2B1 and 2A2X2B1 transitions, and radiative lifetimes for the 2A1 and 2A2 states are calculated based on the MRSDCI wave functions. © 1994 by John Wiley & Sons, Inc.  相似文献   

7.
Multireference perturbation theory with complete active space self-consistent field (CASSCF) reference functions is applied to the study of the valence π→π* excited states of 1,3-butadiene, 1,3,5-hexatriene, 1,3,5,7-octatetraene, and 1,3,5,7,9-decapentaene. Our focus was put on determining the nature of the two lowest-lying singlet excited states, 11Bu+ and 21Ag, and their ordering. The 11Bu+ state is a singly excited state with an ionic nature originating from the HOMO→LUMO one-electron transition while the covalent 21Ag state is the doubly excited state which comes mainly from the (HOMO)2→(LUMO)2 transition. The active-space and basis-set effects are taken into account to estimate the excitation energies of larger polyenes. For butadiene, the 11Bu+ state is calculated to be slightly lower by 0.1 eV than the doubly excited 21Ag state at the ground-state equilibrium geometry. For hexatriene, our calculations predict the two states to be virtually degenerate. Octatetraene is the first polyene for which we predict that the 21Ag state is the lowest excited singlet state at the ground-state geometry. The present theory also indicates that the 21Ag state lies clearly below the 11Bu+ state in decapentaene with the energy gap of 0.4 eV. The 0–0 transition and the emission energies are also calculated using the planar C2h relaxed excited-state geometries. The covalent 21Ag state is much more sensitive to the geometry variation than is the ionic 11Bu+ state, which places the 21Ag state significantly below the 11Bu+ state at the relaxed geometry. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 157–175, 1998  相似文献   

8.
Summary The three-dimensional potential energy functions have been calculated from highly correlated multireference configuration interaction electronic wavefunctions for theX 3 B 1,a 1 A 1, andb 1 B 1 states of the NH 2 + ion. For the quasi-linear electronic ground state this information and the electric dipole moment functions have been used to calculate spectroscopic constants, line intensities and rotationally resolved absorption spectra. For thea 1 A 1-b 1 B 1 bent/quasi-linear Renner-Teller system ro-vibronic energy levels have been obtained from a variational approach accounting for anharmonicity, rotation-vibration and electronic angular momenta coupling effects. The vibronic levels are given for energies up to 13 500 cm–1 for the bending levels and up to 8000 cm–1 for the stretching and combination levels.Dedicated in the honor of Prof. Werner Kutzelnigg  相似文献   

9.
Vertical proton affinities were calculated with closed and open shell direct SCF-MO methods for the ground, excited triplet and ionized doublet states of CH2O and CH2OH+.The computed gas phase basicity of CH2O follows the order: CH2O(1 A 1) > CH2O*(3 A 1 or 3 A 2) > CH2O+(2 B 2 or 2 B 1).  相似文献   

10.
A three-dimensional potential energy function has been calculated for the X1Σ+g state of NO+2 from ab initio MRD-CI data. With this PE function, converged vibrational calculations have also been performed for ten vibrational states, with the aid of a computer program developed in the present work for this purpose. The calculated harmonic frequencies, vibrational term values and rotational constants are in good agreement with experimental data.  相似文献   

11.
Summary The geometric isomerization and the dehydrogenation of HP=PH in the ground and some low-lying excited states are investigated by theoretical calculations. The reaction paths are traced by either the CASSCF or UHF-SCF calculations using the 6-31G(d,p) basis functions, and the accompanying energy changes are calculated by the MRD-CI method employing the [5s3p1d]/[2s1p] basis functions. The barrier heights for the trans-to-cis isomerization, by the planar inversion and the nonplanar twisting, in the ground state are calculated to be 265 and 144 kJ/mol (with the vibrational zero-point energy corrections), respectively. The latter barrier is noticeably lower than the H-P and the P-P bond dissociation energies oftrans-HP=PH (1Ag), which are 304 and 271 kJ/mol, respectively. The ground-state HP2 radical (2A'), which is to be formed by the dehydrogenation of HP=PH, should suffer further decomposition into P2 (1 g + ) and H with an activation energy of 139 kJ/mol. The lowest excited state of HP2 is found to be a hydrogen-bridged 3-electron system (2A2) having an isosceles triangle structure. It has proved to be formed by the dehydrogenation of the lowest excited singlet state (1B) of HP=PH via a transition state which lies 194 kJ/mol above the1B state. The excited HP2 (2A2) is state-correlated with P2 (3u)+H.  相似文献   

12.
To understand the low-lying singlet states of dithienyl polyenes, we investigated the solvatochromism of a series of α,ω-di(2-dithienyl 3,4-butyl) polyenes having n=1–5 double bonds. Absorption and emission spectra were collected in a series of aprotic solvents. The absorption energy dispersion effect sensitivity increased smoothly with n, reaching asymptotic behavior as n approached 5. The emission energy had less solvent sensitivity. The trends gave evidence for the existence of a 1B*u absorbing state and a 1A*g emitting state. We observed sensitivity of the absorbing and emitting states to solute–solvent electrostatic interactions, suggesting the dithienyl polyenes had a polar ground state conformation.  相似文献   

13.
The region-functional concept of electron density has been quantitatively examined for 1sg, 2pu, 2pu, and 3dg states of H 2 + system on the basis of Berlin diagram which divides the three-dimensional molecular space into binding and antibinding regions. The electronic charge, Hellmann-Feynman (H-F) force, and stabilization energy of the system are partitioned into the binding and antibinding contributions by the regional integrations.Dynamic behaviors of the electron density (i.e. electron-cloud preceding and following) during the interaction processes are also clarified using the centers of electron density and force density.Differences in attractive and repulsive, and - and -type interactions are discussed from the force and density point of view.  相似文献   

14.
Anab initio study of the relative stability for the states2 A 1g and2 E g of C2H 6 + has been carried out. The results of the Open Shell Restricted Hartree-Fock calculations lead to assign the2 A 1 g as the ground state of the molecule in agreement with previous SCF calculations.The correlation energy associated to both states has been calculated within the correlation hole model and the results, contrary to those obtained from Configuration Interaction calculations, do not alter qualitatively the conclusions from SCF.  相似文献   

15.
This article reports new square‐planar Fe(CO)4 D4h structures that are optimized, using the Hartree–Fock (HF) approach, and multiconfiguration self‐consistent field (MCSCF) theory in active space [2b2g2ega1ga2u]8, and which energy increased in sequence: 3B2g TS < 1A1g TS < 1A1g GS. A triple ζ valence basis set supplemented with 4f for Fe and 3d for C and O polarization shells [TZV (DF)] was used. At the HF/TZV (DF) level, 1A1g TS and 3B2g TS (3B2g TS energetically more favorable), there are transition states of tetrahedral inversion (defining stereochemical flexibility of Fe(CO)4) between known equivalent 1A1 and 3B2 Jahn–Teller distorted tetrahedron C2v structures with activation energy at ~0.96 kcal/mol according to the experimental data. 1A1g TS differs from 1A1g GS in electronic configuration by occupation of a1g and a2u MOs. At the MCSCF/ TZV (DF) level, 1A1g TS and 1A1g GS are optimized as near‐pure states in different potential energy surfaces (PES) avoided conical intersection with near‐equal interatomic distances, and define electronic flexibility of Fe(CO)4. Estimation of the energy separation in a two‐level system that avoids a conical intersection from vibrational spectrum is based on the effective Hamiltonian of the perturbation theory. The energy gap between two square‐planar Fe(CO)4 D4h 1A1g TS < 1A1g GS is 0.27 kcal/mol. The energy gap between 1A1g GS and 1A1 is 1.28 kcal/mol. It is possible to observe 3B2, 1A1 and 1A1g GS separately in the course of the experiment. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

16.
Ab initio electronic structure calculations are reported for low-lying electronic states, 1A1, 1A2, 3A2, 1B1, 3B1, 1B2, and 3B2 of the FNO2 molecule. Geometric parameters for the ground state 1A1 are predicted by MRSDCI calculations with a double-zeta plus polarization basis set. The vertical excitation energies for these electronic states are determined using MRSDCI/DZ+P calculations at the ground-state equilibrium conformation. The oscillator strengths and radiative lifetimes for some electronic states are calculated based on the MRSDCI wave functions. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Summary The equilibrium geometries, excitation energies, force constants and vibrational frequencies for four low-lying electronic statesX 2 A 1,2 B 1,2 B 2 and2 A 2 of the CF 2 + ion have been calculated at the MRSDCI level with a double zeta plus polarization basis set. Our calculated excitation energies for these states and vibrational frequencies for the ground state are in good agreement with experimental data via photoelectron spectroscopy of the CF2 radical (carbene). The electronic transition dipole moments, oscillator strengths for the2 B 1 X 2 A 1 and2 B 2 X 2 A 1 transitions, radiative lifetimes for the2 B 1 and2 B 2 states and the spin properties for theX 2 A 1 state are calculated based on the MRSDCI wavefunctions.  相似文献   

18.
SCF and MC-SCF/CI calculations were carried out on the low-lying electronic states of NO2, NO 2 + and NO 2 , using a double-zeta quality basis set of contracted Gaussian functions. The calculations were performed primarily at the equilibrium geometry (R NO = 2.25 ao, ONO=134 °) of theX 2 A 1 state of NO2. SCF calculations on NO 2 + in a linear conformation were also performed. Results are presented and compared with experiment and other calculations.Research supported in part by Air Force Delivery Orders F33615-72-M-5015 and MIPR889474-00117 and Air Force Office of Scientific Research and in part by the United States Energy Research and Development Administration.  相似文献   

19.
A theory of vibronic coupling in molecules is presented and applied to butatriene. The energies and coupling constants which enter the calculation are computed using ab initio Hartree—Fock and many-body methods. The influence of the energy splitting and the coupling constants on the calculated spectrum is discussed. It is definitely shown that the “mystery band” in the photoelectron spectrum of butatriene arises from the vibronic coupling between the electronic states 2B3g and 2B3u. To reproduce the experimental observations it is essential to include in the calculation both totally and non-totally symmetric vibrational modes.  相似文献   

20.
The geometric, energetic, and spectroscopic properties of the ground state and the lowest four singlet excited states of pyrazine have been studied by using DFT/TD‐DFT, CASSCF, CASPT2, and related quantum chemical calculations. The second singlet nπ* state, 1Au, which is conventionally regarded dark due to the dipole‐forbidden 1Au1Ag transition, has been investigated in detail. Our new simulation has shown that the state could be visible in the absorption spectrum by intensity borrowing from neighboring nπ* 1B3u and ππ* 1B2u states through vibronic coupling. The scans on potential‐energy surfaces further indicated that the 1Au state intersects with the 1B2u states near the equilibrium of the latter, thus implying its participation in the ultrafast relaxation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号