首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The charge-transfer interaction of 2,3-diaminopyridine (DAPY) and iodine has been investigated spectrophotometrically in the solvents chloroform and dichloromethane at room temperature. The results indicate the formation of 1:2 charge-transfer complex in each solvent with the observation of the two characteristic absorptions for triiodide ion around 355 and 295 nm. The iodine complex is formulated as [(DAPY)I]+.I3-. The formation of the triiodide ion, I3-, is further confirmed by the observation of the characteristic bands for non-linear I3- ion with C2v symmetry at 151 and 132 cm(-1) assigned to nu(as)(I-I) and nu(s)(I-I) of the I-I bonds and at 61 cm(-1) due to bending delta(I3-). The mid infrared spectra of (DAPY) and triiodide complex are also obtained and assigned.  相似文献   

2.
The interaction of the interesting polynitrogen cyclic base 1,4,7-trimethyl-1,4,7-triazacyclononane (TMTACN) with the sigma-acceptor iodine and pi-acceptors tetracyanoethylene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetrachloro-p-benzoquinone (chloranil) have been studied spectrophotometrically and cyclic voltametrically in chloroform at 20 degrees C. Based on the obtained data, the formed charge-transfer complexes were formulated as [(TMTACN)I](+).I(3)(-), [(TMTACN)(TCNE)(5)], [(TMTACN)(TCNQ)(3)] and [(TMTACN)(chloranil)(3)] where the stoichiometry of the reactions, donor:acceptor molar ratios, were shown to equal 1:2 for iodine complex, 1:3 for chloranil and TCNQ complexes and 1:5 for TCNE complex.  相似文献   

3.
Co-Fe layered double hydroxides at different Fe/Co ratios were synthesized from brucite-like Co(2+)(1-x)Fe(2+)(x)(OH)(2) (0 ≤ x ≤ 1/3) via oxidative intercalation reaction using an excess amount of iodine as the oxidizing agent. A new redoxable species: triiodide (I(3)(-)), promoted the formation of single-phase Co-Fe LDHs. The results point to a general principle that LDHs with a characteristic ratio of total trivalent and divalent cations (M(3+)/M(2+)) at 1/2 may be the most stable in the oxidative intercalation procedure. At low Fe content, e.g., starting from Co(2+)(1-x)Fe(2+)(x)(OH)(2) (x < 1/3), partial oxidation of Co(2+) to Co(3+) takes place to reach the M(3+)/M(2+) threshold of 1/2 in as-transformed Co(2+)(2/3)-(Co(3+)(1/3-x)-Fe(3+)(x)) LDHs. Also discovered was the cointercalation of triiodide and iodide into the interlayer gallery of as-transformed LDH phase, which profoundly impacted the relative intensity ratio of basal Bragg peaks as a consequence of the significant X-ray scattering power of triiodide. In combination with XRD simulation, the LDH structure model was constructed by considering both the host layer composition/charge and the arrangement of interlayer triiodide/iodide. The work provides a clear understanding of the thermodynamic and kinetic factors associated with the oxidative intercalation reaction and is helpful in elucidating the formation of LDH structure in general.  相似文献   

4.
Xue Z  Daran JC  Champouret Y  Poli R 《Inorganic chemistry》2011,50(22):11543-11551
We report here a thorough (1)H NMR study of Fe(acac)(2) solutions in a wide variety of noncoordinating and coordinating solvents, as well as the interaction of this complex with Et(3)N, pyridine, PMe(2)Ph, and R(2)PCH(2)CH(2)PR(2) [R = Ph (dppe), Et (depe)] in C(6)D(6). The study reveals that Fe(acac)(2) is readily transformed into Fe(acac)(3) in solution under aerobic conditions and that the commercial compound is usually contaminated by significant amounts of Fe(acac)(3). The (1)H NMR resonances of Fe(acac)(2) are rather solvent-dependent and quite different than those reported in the literature. The compound is unstable in CDCl(3) and stable in CD(2)Cl(2), C(6)D(6), CD(3)CN, acetone-d(6), DMSO-d(6), THF-d(8), and CD(3)OD. The addition of the above-mentioned ligands (L) reveals only one paramagnetically shifted band for each type of acac and L proton, the position of which varies with the L/Fe ratio, consistent with rapid ligand exchange equilibria on the NMR time scale. A fit of the NMR data at a high L/Fe ratio allows the calculation of the expected resonances for all protons in the Fe(acac)(2)L(2) molecules. The system with the bidentate depe ligand shows evidence for a slow ligand exchange at low depe/Fe ratios, proposed to involve a species with the cis-chelated mononuclear Fe(acac)(2)(depe) structure, whereas the fast exchange at a higher ratio is proposed to involved a trans-Fe(acac)(2)(κ(1)-depe)(2) complex. Complex Fe(acac)(2)(dppe) cannot be investigated in solution because of low solubility in a noncoordinating solvent and because of the poor dppe competition for binding in coordinating solvents. The compound was crystallized, and its X-ray structure reveals a 1-dimensional polymeric structure with dppe-bridged Fe centers having the trans-octahedral Fe(acac)(2)(κ(1)-dppe)(2) coordination environment.  相似文献   

5.
Reaction of lutetium metal with 1.5 equiv of elemental iodine in 2-propanol leads to the isolation of LuI(3)(HO(i)Pr)(4) (1). An X-ray crystal structure reveals an ionic structure with well-separated [LuI(2)(HO(i)Pr)(4)] cations and [I] anions. Dissolution of 1 in pyridine generates the unusual alkoxide species [LuI(O(i)Pr)(py)(5)][I] (2) with the elimination of HI. An X-ray crystal structure of 2 confirmed the ionic nature of the compound, with the cationic portion of the complex exhibiting a seven-coordinated lutetium center with trans-disposed iodo and alkoxide ligands and five pyridine molecules equally displaced within the equatorial plane. Exposure of 2 to iodotrimethylsilane yields the expected triiodide species [LuI(2)(py)(5)][I] (3), which may also be prepared by refluxing commercially available LuI(3) in THF, followed by crystallization from a THF/pyridine mixture. The solid-state structure of 3 is similar to that of 2, with the alkoxide ligand having been replaced by an iodide. The formation of ionic structures 1-3 as opposed to the higher-coordinated neutral species may be traced to the small lutetium center and the presence of relatively strong Lewis bases within the coordination sphere of the metal.  相似文献   

6.
The molecular complexation reaction between iodine and the interesting mixed oxygen-nitrogen cyclic base N,N'-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (DBTODAOD) has been studied spectrophotometrically in CH2Cl2, CHCl3, and CCl4. The results of photometric titrations and elemental analysis show that the DBTODAOD base:iodine ratio is 1:4 forming the heptaiodide complex [(DBTODAOD)I]+.I7-. The heptaiodide ion (I7-) is described as I3-(2I2) confirmed by the observation of its characteristic strong absorptions around 365 and 295 nm. In addition, the far infrared spectrum of the solid complex shows the three vibrations of I3- unit at 142, 104, and 62 cm(-1) assigned to nuas(I-I), nus(I-I) and delta(I-3), respectively, while the Raman spectrum shows the corresponding bands at 147 and 108 cm(-1) beside two other bands at 181 and 214 cm(-1) related to the vibration of the I2 unit and the first overtone of nus(I-I) of I3-, respectively. The structure of the formed heptaiodide complex was further supported by thermal gravimetric analysis measurements. Group theoretical analysis indicate that the triiodide unit (I3-) in I7- may be non-linear with C2v symmetry.  相似文献   

7.
8.
Janczak J 《Inorganic chemistry》2003,42(11):3549-3558
Crystals of iodine-doped zirconium(IV) diphthalocyanine, [ZrPc(2)]I(3).I(2) (where Pc = C(32)H(16)N(8)), were grown directly in the reaction of pure zirconium powder with phthalonitrile under a stream of iodine at 260 degrees C. [ZrPc(2)]I(3).I(2) crystallizes in the space group P2(1)/m (No. 11) of the monoclinic system with lattice parameters of a = 6.735(1), b = 25.023(5), and c = 17.440(3) A, beta = 99.43(3) degrees, and Z = 2. The crystals of [ZrPc(2)]I(3).I(2) are built up from two pseudo-monodimensional aggregates: one-electron-oxidized [ZrPc(2)](+) units; weak interacting triiodide I(3)(-) ions with neutral diiodine molecules. The I(3)(-) ions and neutral I(2) molecules in the crystal of [ZrPc(2)]I(3).I(2) have been also detected by Raman spectroscopy. The [ZrPc(2)](+) units form stacks along the a axis, while the polymeric...I(3)(-)...I(2)...I(3)(-)...I(2)(-)... zigzag chains are located in the crystal along the b axis, so both pseudo-monodimensional aggregates are perpendicular to each other. This arrangement is different from that found in the tetragonal crystals of [ZrPc(2)](I(3))(2/3) in which both monodimensional aggregates, i.e., the stacks of partially oxidized [ZrPc(2)](2/3+) units and chains of symmetric triiodide ions, are parallel. EPR experiment together with the X-ray single-crystal analysis clearly shown that oxidation of the diamagnetic ZrPc(2) complex by iodine is ligand centered and homogeneously affecting both phthalocyaninato rings of ZrPc(2); thus, the formal oxidation state of both Pc rings in [ZrPc(2)]I(3).I(2) is nonintegral (-1.5). The UV-vis spectrum of [ZrPc(2)] I(3).I(2) is very similar to the spectrum of unoxidized ZrPc(2) complex in the B Soret and Q spectral region. However, in the spectrum of [ZrPc(2)] I(3).I(2) one additional band at approximately 502 nm is observed, which indicates the existence of the one-electron-oxidized phthalocyaninato(-) radical ligand and is assigned to the electronic transition from a deeper level to the half-occupied HOMO level. The single-crystal electrical conductivity data show anisotropy and nonmetallic character in conductivity (d sigma/dT > 0). The charge transport mainly proceeds along the pseudo-monodimensional stacks of [ZrPc(2)](+) units. The relatively high conductivity along the stacks of one-electron-oxidized [ZrPc(2)](+) units results from the staggering orientation of Pc rings (rotation angle 45.0(2) degrees ) that leads to the short inter-ring C(alpha)(pyrrole)[bond]C(alpha)(pyrrole) contacts (2.839(3)-3.024(3) A). These C(alpha)-pyrrole atoms make appreciable contribution to the partially occupied pi-molecular orbital of Pc macrocycle and the greatest overlap of the HOMO orbitals that form the conduction band of partially oxidized molecular crystals.  相似文献   

9.
We present a study of the metal-centered vibrations in the first step of the Fe(III)-catalyzed Michael reaction. Nuclear inelastic scattering of synchrotron radiation was carried out on a shock-frozen solution of FeCl3.6H2O in 2-oxocyclopentane ethylcarboxylate (CPEH), as well as on the solid reference compounds FeCl3.6H2O, [N(CH3)4][FeCl 4], and Fe(acac) 3. In addition to the vibrations of the FeCl4(-) anion at 133 and 383 cm(-1), a multitude of modes associated with the complex Fe(CPE)2(H2O)2 could be identified. Normal-mode analysis on different isomers of the simplified model complex Fe(acac)2(H2O)2 as well as that of the full complex carrying two entire CPE ligands was carried out using density functional calculations. Comparison with experiment suggests that the facial bis(diketonato) isomer probably dominates in the reaction mixture. Thus, we have identified for the first time the isomeric structure of an iron-based intermediate of a homogeneous catalytic reaction using nuclear inelastic scattering.  相似文献   

10.
Interactions of some pyrimidine derivatives, 4-amino-2,6-dimethylpyrimidine, kyanmethin, (4AP), 2-amino-4,6-dimethylpyrimidine (2AP), 2-aminopyrimidine (AP), 2-amino-4-methylpyrimidine (AMP), 2-amino-4-methoxy-6-methylpyrimidine (AMMP), and 4-amino-5-chloro-2,6-dimethylpyrimidine (ACDP) as electron donors, with iodine (I(2)), as a typical sigma-electron acceptor, have been studied. Electronic absorption spectra of these interactions in several organic solvents of different polarities have performed instant appearance of clear charge transfer (CT) bands. Formation constants (KCT), molar absorption coefficients (epsilonCT) and thermodynamic properties, DeltaH, DeltaS, and DeltaG, of these interactions have been determined and discussed. Electronic absorption spectra of the solutions of the synthesized pyrimidines-iodine, P-I2, CT complexes have shown the characteristic bands of the triiodide ion, I3*. UV/vis spectral tracking of these interactions have shown that by lapse of time the first formed CT complex, P-I2, is transformed to the corresponding triiodide complex, P(+)I.I3*, then, the later interacts as a new unconventional acceptor and it forms a CT complex of the form (P).(P+I.I3*). Elemental analyses of these solid complexes have indicated the stoichiometric ratio 2:2, or formally 1:1, P:I2.  相似文献   

11.
The reactions of the early-late trinuclear complex [Cp(acac)Ti(mu(3)-S)(2)Ir(2)(CO)(4)] (1) with electrophiles have been found to occur on the iridium atoms with no other involvement of the early metal than in electronic effects. The reaction with iodine gave two isomers of the diiridium(II) complex [Cp(acac)Ti(mu(3)-S)(2)Ir(2)I(2)(CO)(4)] differentiated by the relative positions of the iodo ligands on the iridium atoms. The reactions with iodoalkanes are highly stereoselective to give one sole isomer of formula [Cp(acac)Ti(mu(3)-S)(2)Ir(2)(R)(I)(CO)(4)] (R = CH(3), CH(2)I, CHI(2)) with a carbonyl and the iodo ligand trans to the metal-metal bond. The structures of the symmetrical isomer with the iodo ligands trans to the metal-metal bond and that of the compound with R = CHI(2) have been solved by X-ray diffraction methods. The stereoselectivity of the oxidative-addition reactions can be rationalized assuming the influence of steric effects of the groups on the titanium center and a radical-like mechanism. Reactions of 1 with the activated acetylenes, dimethylacetylenedicarboxylate and methylacetylenecarboxylate, gave the complexes [Cp(acac)Ti(mu(3)-S)(2)Ir(2)(mu-eta(1)-RC=CCO(2)Me)(CO)(4)] (R = CO(2)Me, H), with the alkyne bridging the two iridium centers as a cis-dimetalated olefin and the C=C bond parallel to the Ir-Ir axis. Two isomers resulting from the disposition of the alkyne along the Ir-Ir vector were observed in solution for the compound with the nonsymmetrical alkyne (R = H), while only one was observed for the compound with R = CO(2)Me. An exchange, fast in the NMR time scale, of the apical with the equatorial carbonyls occured in the complexes [Cp(acac)Ti(mu(3)-S)(2)Ir(2)(mu-eta(1)-RC=CCO(2)Me)(CO)(4)], producing their equivalence in the (13)C((1)H) NMR spectra.  相似文献   

12.
The charge-transfer complex formation of iodine with antipyrine has been studied spectrophotometrically in chloroform, dichloromethane (DCM) and 1,2-dichloroethane (DCE) solutions at 25 degrees C. The results indicate the formation of 1:1 charge-transfer complexes. The observed time dependence of the charge-transfer band and subsequent formation of I(3)(-) in solution were related to the slow transformation of the initially formed 1:1 antipyrine:I(2) outer complex to an inner electron donor-acceptor (EDA) complex, followed by fast reaction of the inner complex with iodine to form a triiodide ion. The values of the equilibrium constant, K, are calculated for each complex and the influence of the solvent properties on the formation of EDA complexes and the rates of subsequent reaction is evaluated.  相似文献   

13.
Ruthenium bis(beta-diketonato) complexes have been prepared at both the RuII and RuIII oxidation levels and with protonated and deprotonated pyridine-imidazole ligands. RuII(acac)2(py-imH) (1), [RuIII(acac)2(py-imH)]OTf (2), RuIII(acac)2(py-im) (3), RuII(hfac)2(py-imH) (4), and [DBU-H][RuII(hfac)2(py-im)] (5) have been fully characterized, including X-ray crystal structures (acac = 2,4-pentanedionato, hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionato, py-imH = 2-(2'-pyridyl)imidazole, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene). For the acac-imidazole complexes 1 and 2, cyclic voltammetry in MeCN shows the RuIII/II reduction potential (E1/2) to be -0.64 V versus Cp2Fe+/0. E1/2 for the deprotonated imidazolate complex 3 (-1.00 V) is 0.36 V more negative. The RuII bis-hfac analogues 4 and 5 show the same DeltaE1/2 = 0.36 V but are 0.93 V harder to oxidize than the acac derivatives (0.29 and -0.07 V). The difference in acidity between the acac and hfac derivatives is much smaller, with pKa values of 22.1 and 19.3 in MeCN for 1 and 4, respectively. From the E1/2 and pKa values, the bond dissociation free energies (BDFEs) of the N-H bonds in 1 and 4 are calculated to be 62.0 and 79.6 kcal mol(-1) in MeCN - a remarkable difference of 17.6 kcal mol(-1) for such structurally similar compounds. Consistent with these values, there is a facile net hydrogen atom transfer from 1 to TEMPO* (2,2,6,6-tetramethylpiperidine-1-oxyl radical) to give 3 and TEMPO-H. The DeltaG degrees for this reaction is -4.5 kcal mol(-1). 4 is not oxidized by TEMPO* (DeltaG degrees = +13.1 kcal mol(-1)), but in the reverse direction TEMPO-H readily reduces in situ generated RuIII(hfac)2(py-im) (6). A RuII-imidazoline analogue of 1, RuII(acac)2(py-imnH) (7), reacts with 3 equiv of TEMPO* to give the imidazolate 3 and TEMPO-H, with dehydrogenation of the imidazoline ring.  相似文献   

14.
The monohapto neutral 2-(diphenylphosphino)aniline (PNH(2)) complexes [Au(C(6)F(5))(2)X(PNH(2))] (X = C(6)F(5) (1), Cl (2)) have been obtained from [Au(C(6)F(5))(3)(tht)] or [Au(C(6)F(5))(2)(micro-Cl)](2) and PNH(2), and the cationic [Au(C(6)F(5))(2)(PNH(2))]ClO(4) (3) has been similarly prepared from [Au(C(6)F(5))(2)(OEt(2))(2)]ClO(4) and PNH(2) or from 2 and AgClO(4). The neutral amido complex [Au(C(6)F(5))(2)(PNH)] (4) can be obtained by deprotonation of 3 with PPN(acac) (acac = acetylacetonate) or by treatment of the chloro complex 2 with Tl(acac). It reacts with [Ag(OClO(3))(PPh(3))] or [Au(OClO(3))(PPh(3))] to give the dinuclear species [Au(C(6)F(5))(2)[PNH(MPPh(3))]]ClO(4) (M = Ag (5), Au (6)). The latter can also be obtained by reaction of equimolar amounts of 3 and [Au(acac)(PPh(3))]; when the molar ratio of the same reagents is 1:2, the trinuclear cationic complex [Au(C(6)F(5))(2)[PN(AuPPh(3))(2)]]ClO(4) (7) is obtained. The crystal structures of complexes 2-4 and 7 have been established by X-ray crystallography; the last-mentioned displays an unusual Au(I)-Au(III) interaction.  相似文献   

15.
The neutral complex [Ru(2)(acac)(4)(bptz)] (I) has been prepared by the reaction of Ru(acac)(2)(CH(3)CN)(2) with bptz (bptz = 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine) in acetone. The diruthenium(II,II) complex (I) is green and exhibits an intense metal-ligand charge-transfer band at 700 nm. Complex I is diamagnetic and has been characterized by NMR, optical spectroscopy, IR, and single-crystal X-ray diffraction. Crystal structure data for I are as follows: triclinic, P1, a = 11.709(2) A, b = 13.487(3) A, c = 15.151(3) A, alpha = 65.701(14) degrees, beta = 70.610(14) degrees, gamma = 75.50(2) degrees, V = 2038.8(6) A(3), Z = 2, R = 0.0610, for 4397 reflections with F(o) > 4sigmaF(o). Complex I shows reversible Ru(2)(II,II)-Ru(2)(II,III) and Ru(2)(II,III)-Ru(2)(III,III) couples at 0.17 and 0.97 V, respectively; the 800 mV separation indicates considerable stabilization of the mixed-valence species (K(com) > 10(13)). The diruthenium(II,III) complex, [Ru(2)(acac)(4)(bptz)](PF(6)) (II) is prepared quantitatively by one-electron oxidation of I with cerium(IV) ammonium nitrate in methanol followed by precipitation with NH(4)PF(6). Complex II is blue and shows an intense MLCT band at 575 nm and a weak band at 1220 nm in CHCl(3), which is assigned as the intervalence CT band. The mixed valence complex is paramagnetic, and an isotropic EPR signal at g = 2.17 is observed at 77 and 4 K. The solvent independence and narrowness of the 1200 nm band show that complex II is a Robin and Day class III mixed-valence complex.  相似文献   

16.
A series of cyanide-bridged complexes that combine a low-valent photoacceptor rhenium(I) metal center with an electroactive midvalent rhenium(V) complex were prepared. The synthesis involved the preparation of novel asymmetric rhenium(V) oxo compounds, cis-Re(V)O(CN)(acac(2)en) (1) and cis-Re(V)O(CN)(acac(2)pn) (2), formed by reacting trans-[Re(V)O(OH(2))(acac(2)en)]Cl or trans-Re(V)O(acac(2)pn)Cl with [NBu(4)][CN]. The μ-bridged cyanide mixed-oxidation Re(V)-Re(I) complexes were prepared by incubating the asymmetric complexes, 1 or 2, with fac-[Re(I)(bipy)(CO)(3)][OTf] to yield cis-[Re(V)O(acac(2)en)(μ-CN-1κC:2κN)-fac-Re(I)(bipy)(CO)(3)][PF(6)] (3) and [cis-Re(V)O(acac(2)pn)(μ-CN-1κC:2κN)-fac-Re(I)(bipy)(CO)(3)][PF(6)] (4), respectively.  相似文献   

17.
Iron‐catalyzed cross‐coupling reactions have an outstanding potential for sustainable organic synthesis, but remain poorly understood mechanistically. Here, we use electrospray‐ionization (ESI) mass spectrometry to identify the ionic species formed in these reactions and characterize their reactivity. Transmetalation of Fe(acac)3 (acac=acetylacetonato) with PhMgCl in THF (tetrahydrofuran) produces anionic iron ate complexes, whose nuclearity (1 to 4 Fe centers) and oxidation states (ranging from ?I to +III) crucially depend on the presence of additives or ligands. Upon addition of iPrCl, formation of the heteroleptic FeIII complex [Ph3Fe(iPr)]? is observed. Gas‐phase fragmentation of this complex results in reductive elimination and release of the cross‐coupling product with high selectivity.  相似文献   

18.
Vanadium(IV) and -(III) complexes of a tetradentate N(2)OS Schiff base ligand H(2)L [derived from methyl 2-((beta-aminoethyl)amino)cyclopent-1-ene-1-dithiocarboxylate and salicylaldehyde] are reported. In all the complexes, the ligand acts in a bidentate (N,O) fashion leaving a part containing the N,S donor set uncoordinated. The oxovanadium(IV) complex [VO(HL)(2)] (1) is obtained by the reaction between [VO(acac)(2)] and H(2)L. In the solid state, compound 1 has two conformational isomers 1a and 1b; both have been characterized by X-ray crystallography. Compound 1a has the syn conformation that enforces the donor atoms around the metal center to adopt a distorted tbp structure (tau = 0.55). Isomer 1b on the other hand has an anti conformation with almost a regular square pyramidal geometry (tau = 0.06) around vanadium. In solution, however, 1 prefers to be in the square pyramidal form. A second variety of vanadyl complex [VO(L(cyclic))(2)](I(3))(2) (2) with a new bidentate O,N donor ligand involving isothiazolium moiety has been obtained by a ligand-based oxidation of the precursor complex 1 with iodine. Preliminary X-ray and FAB mass spectroscopic data of 2 have supported the formation of a heterocyclic moiety by a ring closure reaction involving a N-S bond. Vanadium(III) complex [V(acac)(HL)(2)] (3) has been obtained through partial ligand displacement of [V(acac)(3)] with H(2)L. Compound 3 has almost a regular octahedral structure completed by two bidentate HL ligands along with an acetylacetonate molecule. Electronic spectra, magnetism, EPR, and redox properties of these compounds are reported.  相似文献   

19.
The syntheses, structures, and magnetic properties of a series of di- and trivalent hydridotris(3,5-dimethylpyrazol-1-yl)borate (Tp*) cyanomanganates are described. Treatment of tris(acetylacetonate)manganese(III) [Mn(acac)(3)] with KTp* and tetra(ethyl)ammonium cyanide affords [NEt(4)][(Tp*)Mn(II)(κ(2)-acac)(CN)] (1), as the first monocyanomanganate(II) complex; attempted oxidation of 1 with iodine affords {(Tp*)Mn(II)(κ(2)-acac(3-CN))}(n) (2) as a one-dimensional chain and bimetallic {[NEt(4)][(Tp*)Mn(II)(κ(2)-acac(3-CN))](2)(μ-CN) (3) as the major and minor products, respectively. A fourth complex, [NEt(4)][(Tp*)Mn(II)(η(2)-acac(3-CN))(η(1)-NC-acac)] (4), is obtained via treatment of Mn(acac(3-CN))(3) with KTp* and [NEt(4)]CN, while [NEt(4)](2)[Mn(II)(CN)(4)] (5) was prepared from manganese(II) trifluoromethanesulfonate and excess [NEt(4)]CN. Tricyanomanganate(III) complexes, [cat][(Tp*)Mn(III)(CN)(3)] [cat = NEt(4)(+), 7; PPN(+), 8], are prepared via sequential treatment of Mn(acac(3-CN))(3) with KTp*, followed by [NEt(4)]CN, or [cat](3)[Mn(III)(CN)(6)] with (Tp*)SnBu(2)Cl. Magnetic measurements indicate that 1, 2, and 4 contain isotropic Mn(II) (S = (5)/(2); g = 2.00) centers, and no long-range magnetic ordering is found above 1.8 K. Compounds 7 and 8 contain S = 1 Mn(III) centers that adopt singly degenerate spin ground states without orbital contributions to their magnetic moments.  相似文献   

20.
The interaction of iodine as a sigma-acceptor with two derivatives of polyamidoamine dendrimers (donor), 1,8-naphthalimide polyamidoamine (PAM1) and 4-piperidino-1,8-naphthalimide polyamidoamine (PAM2) have been investigated spectrophotometrically at room temperature in chloroform. The results indicate the formation of two CT-complexes [(PAM1)I](+)I(3)(-) and [(PAM2)(2)I](+)I(3)(-) with molar ratios of 1:2 and 1:1, respectively. The formation of these two complexes are in good agreement with their elemental analysis, infrared measurements and photometric titration plots based on the characteristic absorption bands of I(3)(-) ion around 280 and 360 nm. Moreover the formation of triiodide ion, I(3)(-), in both of the two complexes was supported by measuring their spectra in the far-infrared region. Three characteristic bands are observed at 125, 110 and 75 cm(-1) due to nu(as)(I-I), nu(s)(I-I) and delta(I(3)(-)), respectively, with C(2v) symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号