首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enthalpy probe measurements were taken of the converging plasma plume in a triple torch plasma reactor and related to substrate heat flux measurements. Results show excellent entrainment of process gases injected into the converging plasma plume by way of the central injection probe. At lower pressures (40 kPa), the plasma volume is equivalent to at least a 3 cm diameter, 4 cm long cylinder, with relatively uniform temperature, velocity, and substrate heat flux profiles when compared to a typical dc arc jet. Converging plasma plume size, substrate heat flux, and enthalpy profiles are also shown to be a strong function of applied system power. Substrate heat flux measurements show smaller radial gradients than enthalpy probe measurements, because of the high radial velocity component of gases above the substrate boundary layer. Enthalpy probe measurements were also conducted for diamond deposition conditions and approximate temperature and velocity profiles obtained. Problems with the uniform gas mixture assumption prohibited more accurate measurements. Reproducibility of enthalpy measurement results was shown with an average standard deviation of 11.8% for the velocity and 7.6% for the temperature measurements.  相似文献   

2.
Enthalpy probe measurements in supersonic plasma flows are subject to various sources of error which are difficult to quantify experimentally v. The relative importance of several such errors has been assessed by means of detailed two-dimensional numerical simulations of high-speed plasma flow impinging on an enthalpy probe. The simulations show that moderate uncertainties in upstream pressure and composition (i.e., degree of ionization) can lead to significant errors in the velocity and temperature inferred from the measurements. These errors tend to be larger in velocity than temperature A second potential source of error is that enthalpy probe data are generally interepreted by means of simplified analytical relations which neglect the effects of finite-rate ionization, internal electronic excitation, thermal radiation, probe cooling, and probe sampling. The importance of these effects was also assessed, and the resulting errors were not ,significant under the conditions examined. We conclude that enthalpy probe measurements in supersonic plasma flows are use f d in situations where the upstream pressure and degree of ionization are known to reasonable accucary.  相似文献   

3.
Computed results are presented describing the temperature and concentration fields obtained when an argon plasma jet is being discharged into ambient air. A previously published mathematical model for turbulent plasma plumes is used for the calculations. These predictions are compared with recent), published experimental measurements by Brossa and Pfender, performed with an enthalpy probe. The theoretical predictions appear to agree reasonably well with the measurements of both the temperature and concentration profiles, with a maximum deviation in the 10–20% range.Notation A max maximum temperature or velocity in the torch exit profile - C 1 C 2 C D constants inK- model - h enthalpy - I torch current - K turbulent kinetic energy per unit mass - m mass concentration of plasma p pressure - Q How rate of argon through the torch - r radial coordinate - r n nozzle radius (inside) - S source term for dependent variable   相似文献   

4.
A water-cooled heat-exchange calorimeter for the measurement of enthalpy increments of fluids up to 700 K and 15 MPa has been constructed. Novel features of the design ensure that heat leaks are small, well controlled, and easily measured. The results of 90 test runs on steam gave enthalpy increments in agreement with steam tables to within 0.5 per cent. The calorimeter has been used to measure enthalpy increments of n-hexane up to 573.2 K and 12.67 MPa, and the results are compared with the Starling modification of the BWR equation of state. Overall agreement of 115 measurements with the BWRS equation is 0.97 per cent. In the critical region BWRS values differ from experiment by up to 4 per cent.  相似文献   

5.
A series of measurements were carried out to establish the reliability associated with isotope ratio (235/238) measurements on uranium samples using a quadrupole inductively coupled plasma mass spectrometer (ICPMS). Figures of merit related to the isotopic measurements were determined using non certified as well as certified materials provided by the New Brunswick Laboratory (NBL). The experimental results showed that repeatability is around 0.5% while reproducibility was calculated as 0.27%. Mass discrimination was determined as 0.03% per mass unit and the system linearity check over five orders of isotope ratios yielded a mass discrimination factor (K factor) of 1.0002±0.0081 (0.81%, 2s). The mean error of measurement obtained from six different certified reference materials was 0.77%.  相似文献   

6.
The sublimation enthalpy of dimethyl oxalate has been measured by calorimetric and head space analysis. These results along with vaporization enthalpy measured by correlation gas chromatography and fusion enthalpy measurements are compared to results predicted by two estimation techniques. A previous experimental measurement was found to be in error. A mean value of (75.2±0.5) kJ/mol was obtained which results in a corrected molar value of (–681.5±0.8) kJ/mol for the enthalpy of formation of gaseous dimethyl oxalate, f H m o (g, 298.15 K). This new value of f H m o (g, 298.15 K) for dimethyl oxalate, in combination with other enthalpies of formation, suggests that the ground state of oxalates are destabilized relative to -diketones by approximately 25 kJ/mol.  相似文献   

7.
An accurate determination of electron density, temperature, and velocity distributions is of primary interest for the characterization of steady-state thermal plasma spray jets. Our diagnostic capabilities based on optical emission spectroscopy include measurements of absolute emission coefficients and Stark broadening. In addition, enthalpy probe diagnostics has also been used for temperature and velocity measurements. Observation of large discrepancies between temperatures derived from absolute emission coefficients, Stark broadening, and from enthalpy probe measurements indicate that severe deviations from LTE (local thermal equilibrium) exist in various regimes of plasma spray jets. Nonequilibrum characterization of such turbulent thermal plasma jets suggests that diffusion of high-energy electrons into the fringes of plasma jets and deviations from chemical equilibrium due to high velocities in the core of plasma jets and entrainment of cold gas, are the main reasons for these discrepancies. The establishment of a reliable data base, taking these nonequilibrium effects into account, is a prerequisite for meaningful modeling of real plasma jets.  相似文献   

8.
Volume recovery measurements have been used to study the physical aging behavior of a polyetherimide. Isothermal aging temperatures near Tg were studied with aging times ranging up to several days. The volume decreases during physical aging and levels off at equilibrium. For comparison purposes, the data are normalized to yield the departure from equilibrium which varies from unity at very short aging times to zero when equilibrium is reached. As the aging temperature decreases, the normalized curves are shifted to longer times without a significant change in shape. Hence, the data can be reduced by aging time—temperature superposition. The temperature dependence of the shift factors used to reduce the volume recovery data and the times to reach equilibrium for the volume recovery follow the WLF equation and agree within experimental error with the values from enthalpy and creep measurements obtained in previous work. However, the approach to equilibrium for volume appears to differ from that of enthalpy, with volume recovery being faster than the enthalpy recovery at short times. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 929–936, 1997  相似文献   

9.
A quadrupole inductively coupled plasma mass spectrometer (Q-ICP-MS) has been used for determination of lead in plant materials using isotope-dilution inductively coupled plasma mass spectrometry. The accuracy of the method was demonstrated by analysis of a matrix certified reference material, NIST SRM 1547 Peach Leaves. Specific instrumental parameters of Q-ICP-MS, including isotope analysis mode, integration time per point, number of points per mass, and number of measurements, were optimized to obtain the best measurement precision. The precision (expressed as relative standard deviation) associated with replicate measurement of the 208Pb/206Pb isotope ratio and its mass-bias correction factor was <0.2%. Following “Example A7” of the Eurachem/CITAC Guide, the relative expanded uncertainty, U rel, (coverage factor k = 2) was found to be ±1.1%, which fulfilled the target value of ±2% maximum and was lower than the uncertainty of ±3.4% reported by NIST based on isotope-dilution thermal ionization mass spectrometry. Sample recovery of 99% was obtained.  相似文献   

10.
The combination of propofol, ketamine and rocuronium can be used for anesthesia of ventilated rats. However, reliable pharmacokinetic models of these drugs have yet to be developed in rats, and consequently optimal infusion strategies are also unknown. Development of pharmacokinetic models requires repeated measurements of drug concentrations. In small animals, samples must be tiny to avoid excessing blood extraction. We therefore developed a drug assay system using high‐performance liquid chromatography coupled with quadrupole mass spectrometry that simultaneously determines the concentration of all three drugs in just 10 μL rat plasma. We established a plasma extraction protocol, using acetonitrile as the precipitating reagent. Calibration curves were linear with R2 = 0.99 for each drug. Mean recovery from plasma was 91–93% for propofol, 89–93% for ketamine and 90–92% for rocuronium. The assay proved to be accurate for propofol 4.1–8.3%, ketamine 1.9–7.8% and rocuronium ?3.6–4.7% relative error. The assay was also precise; the intra‐day precisions were propofol 2.0–4.0%, ketamine 2.7–2.9% and rocuronium 2.9–3.3% relative standard deviation. Finally, the method was successfully applied to measurement the three drugs in rat plasma samples. Mean plasma concentrations with standard deviations were propofol 2.0 μg/mL ±0.5%, ketamine 3.9 μg/mL ±1.0% and rocuronium 3.2 μg/mL ±0.8% during ventilation.  相似文献   

11.
For stand-alone sensor systems apart from defined laboratory circumstances sensors are required, which show a high stability against perturbing environmental influences like the relative humidity (r.h.). We present a portable sensor system, which is capable to quantify tetrachloroethene (TCE) in humid air. The system works highly reproducible and shows only negligible cross-sensitivity towards relative humidity. This allows a single calibration valid from 0 to 80% r.h.. Therefore, referencing with an extra sensor for humidity is not necessary. Binary mixtures of TCE and freone R113 were quantified for 0 and 40% r.h. with a root mean square error of prediction of approximately 3% with respect to the maximum concentration of TCE and R113. The sensitive elements used in the experiments consisted of thin polymer films on glass substrates. The measurements were performed with the optical measurement technique RIfS (Reflectometric Interference Spectroscopy). Received: 29 May 1998 / Revised: 4 August 1998 / Accepted: 8 August 1998  相似文献   

12.
Melting enthalpy and mixing enthalpy of binary system 2,4-dinitrotoluene and nitrocellulose were determined by DSC method. The maximum value of mixing enthalpy was H max M=1.38 kJ mol−1 for molar fraction x w24DNT = 0.501. The Flory-Huggins parameter (c) was estimated. The solubility curves and glass transition temperatures were predicted and compared with the experimental results. The measurements were performed for the samples with different times of storage at room temperature. The analysis of melting peaks for the mixture leads to the conclusion that for the long periods of storage the melting of 2,4-dinitrotoluene takes place in the confined spaces (pores) and unconfined space (bulk). The crystallization and melting is observed during the short time of storage in mixtures with low nitrocellulose content and in the case of mixtures with a large amount of NC the glass transition is additionally observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The mixing and melting enthalpy of the binary system nitrocellulose+2,6-dinitrotoluene was determined using the DSC method. The mixing enthalpy of the components was calculated. At the melting temperature the maximum value of the mixing enthalpy for the mole fractionx w26DNT=0.607 is equal H M max= −3.41 kJ mol−1. Measurements of the melting process (second measurement) were conducted after a storage period of several days at room temperature. Analysis of the melting peaks shows that the melting process of 26DNT takes place in pores of the micro-fiber and bulk outside the fibers. In the case of a mass fraction of x w26DNT>0.9 the melting process takes place in the bulk, which suggests that in the case of such concentrations separation of the micro-fibers occurs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
A bottleneck of the wide commercial application of laser-induced breakdown spectroscopy (LIBS) technology is its relatively high measurement uncertainty. A partial least squares (PLS) based normalization method was proposed to improve pulse-to-pulse measurement precision for LIBS based on our previous spectrum standardization method. The proposed model utilized multi-line spectral information of the measured element and characterized the signal fluctuations due to the variation of plasma characteristic parameters (plasma temperature, electron number density, and total number density) for signal uncertainty reduction. The model was validated by the application of copper concentration prediction in 29 brass alloy samples. The results demonstrated an improvement on both measurement precision and accuracy over the generally applied normalization as well as our previously proposed simplified spectrum standardization method. The average relative standard deviation (RSD), average of the standard error (error bar), the coefficient of determination (R2), the root-mean-square error of prediction (RMSEP), and average value of the maximum relative error (MRE) were 1.80%, 0.23%, 0.992, 1.30%, and 5.23%, respectively, while those for the generally applied spectral area normalization were 3.72%, 0.71%, 0.973, 1.98%, and 14.92%, respectively.  相似文献   

15.
The present study involves both experimental investigation and mathematical modeling of the diffusion process of a cold gas injected into a main plasma stream. The cold gas (nitrogen or helium) was injected axially through a water cooled tube located along the centerline of an induction plasma torch. The 2-D distribution of the temperature, velocity and concentration profiles in the plasma flow were measured using enthalpy probe techniques. The results are compared with the predictions of a 2-D, LTE, turbulent mathematical model. The effects of the nature (composition) of the injected gas and its mass flow rate are investigated. The enthalpy probe measurements and the predictions of the model are in good agreement. The effective (turbulent and molecular) transport properties are estimated from a comparison of the measured and calculated profiles of the temperature, velocity and concentration fields. This study sheds light on the basic diffusion mechanisms involved in a widely used configuration of induction plasma reactors, i.e. in which the material to be treated is injected axially into the plasma, through a central water cooled tube.  相似文献   

16.
Measurements of composition, temperature, and velocity in atmospheric argon plasma jets are reported, using enthalpy probes. The plasma jets are generated by a commercial type plasma gun and the measurements are expected to be of particular interest for industrial applications such as plasma spraying. Emphasis has been on the central and downstream regions of the plasma flame. The entrainment of air into the jet was found to be very high, even close to the axis of the jet. Gas samples analyzed with a gas chromatograph showed demixing of the air, i.e., nitrogen is more abundant in the jet than at room temperature. The high air entrainment has a strong cooling effect on the plasma, resulting in a rapid temperature drop along the axis. The influence of the argon flow rate and of the arc current on the jet's conditions was parametrically studied. Matching of the quantities measured in the jet with the torch input confirmed the validity of the results, and the relevance of enthalpy probe diagnostics in thermal plasma jets.  相似文献   

17.
A series of N-isopropylacrylamide (NIPAM)-acrylic acid–ethyl methacrylate terpolymers with varied monomer compositions was prepared by radical polymerization. The solution behavior of these polymers was studied in dilute aqueous solution using spectrophotometry, fluorescence spectroscopy and high-sensitivity differential scanning calorimetry. The results obtained revealed that the lower critical solution temperatures depend strongly on the copolymer composition, solution pH and ionic strength. At a high pH, the ionization of acrylic acid (AA) units leads to an increase in solution cloud points (Tc). Solutions of polymers containing 10% or less of AA display a constant Tc for pH above 5.5, with 15% there is a continuous increase in Tc with pH and, for higher AA contents, no clouding was observed within the studied temperature range. Fluorescence probe studies were conducted by following the I 1/I 3 ratio of pyrene vibronic bands and the emission of anilinonaphtalene sulfonic acid, sodium salt (ANS), both approaches revealing the existence of hydrophobic domains for polymers with higher ethyl methacrylate content at temperatures lower than Tc, suggesting some extent of aggregation and/or a coil-to-globule transition. Scanning calorimetry measurements showed an endothermic transition at temperatures agreeing with the previously detected cloud points. Moreover, the transition curves became broader and with a smaller transition enthalpy, as both the AA content and the solution pH were increased. These broader transitions were interpreted to be the result of a wider molecular distribution upon polymer ionization, hence, displaying varied solution properties. The decrease in transition enthalpy was rationalized as a consequence of reminiscent hydration of NIPAM units, even after phase separation, owing to the presence of electric charges along the polymer chain.  相似文献   

18.
The feasibility of using double Langmuir probes to measure electron temperature (Te) in an Ar inductively coupled plasma (ICP) was evaluated. Experimental methods for probing the plasma and for reducing rf interference were devised. Despite these measures, the probe signal was noisy and erratic if the ICP had the normal analytical configuration with a hole through its center, so measurements were restricted to an ICP without an axial channel. Theoretical criteria indicated that Langmuir probe measurements in an atmospheric pressure ICP were in a borderline regime in which the measured Te values may have been depressed somewhat (relative to the actual Te values in the ICP) due to cooling of electrons as they approached the probe. The Te values obtained from the center of the ICP were 7500 K at a forward power of 1.0 kW and 10 000 K at 1.25 kW for a measurement position 8 mm above the load coil. Electron density (ne) measurements by the Langmuir probe method were comparable to or higher than ne values calculated from the Saha equation at the measured Tes. The Te and ne values were high enough to indicate that, if electron cooling and ion-electron recombination occurred near the probes, these effects were not extreme and/or the use of two probes compensated for them in some fashion. The probe measurements also indicated that Te increased with the potential difference between the probes. This latter observation provided tentative evidence that the electron kinetic energy distribution was non-Maxwellian with an excess of higher energy electrons relative to lower energy electrons.  相似文献   

19.
Isothermal titration calorimetry (ITC) and potentiometric titration methods have been used to study the process of proton transfer in the copper(II) ion-glycylglycine reaction. The stoichiometry, conditional stability constants, and thermodynamic parameters (ΔG, ΔH, and ΔS) for the complexation reaction were determined using the ITC method. The measurements were carried out at 298.15 K in solutions with a pH of 6 and the ionic strength maintained with 100 mM NaClO4. Carrying out the measurements in buffer solutions of equal pH but different enthalpies of ionization of its components (Mes, Pipes, Cacodylate) enabled determination of the enthalpy of complex formation, independent of the enthalpy of buffer ionization. The number of protons released by glycylglycine on account of complexation of the copper(II) ions was determined from calorimetric and potentiometric measurements.  相似文献   

20.
An experimental procedure is proposed for direct measurement of the heat involved in the vaporization of volatile heterocyclic compounds. This technique consists on the vaporization of the liquid substance by a sudden decrease of the pressure then, the direct register of heat flow as function of time by differential scanning calorimetry. This procedure allows quantifying the enthalpy of vaporization of compounds such as tetrahydropyran, 2-methoxy-tetrahydropyran, N-morpholine and N-methyl-morpholine. Enthalpies of vaporization were measured in isothermal mode at T=298.15 K and then compared with results from the literature, which currently are obtained by vapour pressure measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号