首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
付琳  高永康  高晶敏 《声学学报》2019,44(2):251-257
系统研究了厚度模压电换能器的背衬厚度、声阻抗率及机械损耗因子对换能器振动性能影响,重点分析了在所关心频率附近的有效机电耦合系数和机械品质因数。计算结果表明,随着背衬厚度增大,换能器的有效机电耦合系数和机械品质因数均震荡减小;背衬声阻抗率与压电片声阻抗率差值增大,换能器有效机电耦合系数减小,机械品质因数增大;保持压电片厚度不变,增大背衬的机械损耗因子,换能器有效机电耦合系数单调减小,机械品质因数有极小值,在给定频率范围内电特性曲线趋于光滑。用有限元方法验证了等效电路计算方法的正确性,并对比了换能器的测试结果和计算结果。计算所得规律为厚度模压电换能器的设计和实验制作提供了理论依据。   相似文献   

2.
The resonance and antiresonance frequency, the effective electromechanical coupling coefficient, and the mechanical quality factor of a sandwich piezoelectric ultrasonic transducer are studied and optimized. The effect of the thickness of thick piezoelectric element electrodes on the transducer performance is analyzed. The effect of the length and position of the piezoelectric elements in the transducer is also studied. It is shown that, although using thick electrodes is beneficial for releasing heat produced by the piezoelectric elements, the effective electromechanical coupling coefficient and the mechanical quality factor are reduced. The length and the position of the piezoelectric elements affect the performances of the transducer. Increasing the length of the piezoelectric elements decreases the mechanical quality factor, but the effective electromechanical coupling coefficient increases. When the length reaches a certain value, the effective electromechanical coupling coefficient reaches a maximum value. When the piezoelectric elements are located at the geometrical center or the displacement node, the effective electromechanical coupling coefficient and the mechanical quality factor are maximized.  相似文献   

3.
陈诚  林书玉 《物理学报》2021,(1):341-351
本文提出了一种基于2-2型压电复合材料的新型宽频带径向振动超声换能器,它主要由内金属圆环和外压电陶瓷复合材料圆环组成.首先利用Newnham串并联理论和均匀场理论推导了2-2型压电复合材料的等效参数;其次利用解析法得到了金属圆环和径向极化压电复合陶瓷圆环径向振动的机电等效电路;最后得到了换能器的六端机电等效电路,从而得到了换能器的频率方程.接着分析了换能器共振频率和反共振频率以及有效机电耦合系数与几何尺寸、两相体积占比的关系,采用仿真软件对新型换能器的径向振动进行了数值模拟.结果表明,利用解析法得到的共振频率和反共振频率与数值模拟结果吻合较好.此外,对换能器在水下的辐射声场进行了仿真研究,结果表明新型复合材料径向换能器相比传统纯陶瓷径向换能器,发射电压响应幅值更大,工作带宽提高接近一倍,声匹配更佳.  相似文献   

4.
Based on the vibration theory of a thin plate, an analytical treatment of the trilaminar bender bar with piezoelectric elements and inert substrate of various lengths is presented for mode analysis. Resonance frequency and effective electromechanical coupling coefficient are calculated by this method. The impacts of the geometries of the bender bar on the performance of its fundamental and third-order flexural mode are investigated in detail under rigid boundary conditions. It is shown that resonance frequency is extremely sensitive to the thickness of inert substrate. Moreover, the effective electromechanical coupling coefficient has peaks as the length of piezoelectric elements varies. The peaks are achieved when the length of piezoelectric elements equals the length between two nodes having zero strains in the x-direction. The trilaminar bender bar will be effectively excited when the strains on the piezoelectric element are in the same phase, which is important to disclose the vibration mechanisms of this kind of transducer. Also, analytical results are compared with the ones of numerical simulation. The results suggest that effective electromechanical coupling coefficient shares similar patterns with electrical conductance, which can be used to characterize transducer performance to a certain extent. It also demonstrates that the analytical treatment provides an efficient alternative way for optimizing the bender bar transducer design.  相似文献   

5.
研制了一种厚度模空耦式压电换能器,使用综合考虑材料衰减系数和声阻抗的空耦式压电换能器电力声等效电路理论模型以指导匹配层结构设计和材料选择,选用新型的空心聚合物微珠/环氧树脂复合材料作为声匹配材料,优化设计电阻抗匹配及结构参数。该换能器中心频率为510 kHz,-6 dB频域相对带宽为25.4%,插入损耗为-27 dB。结果表明,使用新型低衰减系数的闭孔复合材料单匹配层设计的该换能器不仅保证了高灵敏度,同时简化了换能器结构,为空耦式压电换能器研制提供了新思路。   相似文献   

6.
一定厚度的低声阻抗支撑层可以在薄膜体声波谐振器(FBAR)与衬底之间形成声学隔离层,防止声波泄漏到衬底当中。掺碳二氧化硅(CDO)是一种低声阻抗材料,对FBAR具有较好的温度补偿效果,可以作为FBAR与衬底之间的声学隔离层,从而构成一种新型的CDO-FBAR。为了分析CDO-FBAR与通孔型FBAR相比性能是否退化,以及CDO声学隔离层所需厚度,采用多物理场耦合仿真软件分析了CDO-FBAR和通孔型FBAR的谐振频率、Q值、有效机电耦合系数和S参数,并提取了CDO-FBAR纵向振动位移。分析结果表明:CDO-FBAR的谐振频率整体向下漂移;CDO声学隔离层导致S参数的寄生干扰;由于声学损耗增加,Q值略有降低,其中并联谐振点处的Q值降幅更大;有效机电耦合系数略有降低;声波传播到声学隔离层中9 m处就完全衰减,即只需要9 m厚的CDO声学隔离层就能在FBAR与衬底之间形成有效的声学隔离。由此,仿真验证了这种新颖的CDO-FBAR结构的可行性。  相似文献   

7.
高次谐波体声波谐振器HBAR (High-overtone Bulk Acoustic Resonator)由基底、压电薄膜和上下电极组成,系统地研究了它们的结构参数(厚度)和性能参数(特性阻抗)对HBAR的重要性能参数有效机电耦合系数Keff2的影响。在谐振频率附近,通过将HBAR的分布参数等效电路简化为集总参数等效电路得到了它们之间的关系表达式,分析了Keff2在所关心频率最近谐振点的变化情况。结果表明,保持压电薄膜厚度不变,连续增加基底厚度,Keff2呈振荡(非单调)下降,当基底厚度达到一定值时Keff2与厚度成反比下降;保持基底厚度不变,连续增加压电薄膜厚度,Keff2的峰值随基底和压电层的特性阻抗之比增加快速下降,到达极小值后缓慢增加;选择低阻抗的熔融石英作为基底可以获得较大的Keff2;与Al电极相比,Au电极选择适当厚度可以获得较高的Keff2。上述揭示的一些规律为HBAR的优化设计提供了理论依据。   相似文献   

8.
Evans MJ  Webster JR  Cawley P 《Ultrasonics》2000,37(8):589-594
The use of conical piezoelectric transducers as point acoustic sources has been investigated. It has been shown that transducers based on a design originally developed at the National Institute for Standards and Technology in the USA can be used as point transmitters over the frequency range of interest in acoustic emission measurements (100 kHz to around 1 MHz). They should, therefore, be suitable for use in experiments to calibrate structures so that acoustic emission source strengths can be determined. It has also been shown that measurements of the response of the transmitting transducer backing can be used to assess the coupling efficiency, and hence to remove concerns about inconsistent coupling affecting the calibration measurements. The results indicate that the variation of the backing response with coupling is due to a shift in the resonance frequencies of the transducer with the mechanical load impedance. If other transducers can be shown to behave in a similar fashion this effect could be used to measure coupling in standard acoustic emission and ultrasonic transducers.  相似文献   

9.
针对压电圆环弯曲振动机电转换性能较差的问题,提出了一种复合圆环弯曲振动换能器,它由一个径向极化的压电陶瓷内圆环和一个金属外圆环复合而成。基于能量原理推导得到了复合圆环弯曲振动的谐振频率和有效机电耦合系数,探讨了弯曲振动四极子模态特性与其结构尺寸间的关系。当压电圆环尺寸不变时,随外侧金属圆环壁厚增加,复合圆环弯曲振动四极子模态谐振频率上升,有效机电耦合系数迅速上升到极大值后缓慢下降。最后,设计制作了圆环换能器并对其谐振频率和有效机电耦合系数进行了实验测试,测试结果与解析结果和数值模拟结果吻合得较好。   相似文献   

10.
Zhang H  Zhang SY  Zheng K 《Ultrasonics》2006,44(Z1):e737-e740
Generally, in theoretical calculations of high-overtone bulk acoustic resonators (HBAR), metal electrode effects were always ignored. However, the acoustical impedance, thickness and loss of the electrodes affect practically the performances of HBAR operating at high-frequency. For very high-frequency cases, the thickness of the metal electrode is always on the same order of that of the piezo-film and the electrode effects on modes cannot be negligible. In this paper, based on the resonance frequency spectra and Butterworth Van Dyke equivalent circuit of HBAR, the effects of the material, loss, and thickness of the electrodes on the figure of merit, effective electromechanical coupling factor, quality factor, etc. are analyzed. It is demonstrated that the performance of HBAR can also be optimized by using the electrodes with proper impedance, loss and thickness.  相似文献   

11.
Mechanical quality factor Qm is a key characteristic parameter of High-overtone bulk acoustic resonator(HBAR). The effects of structure parameter(thickness) and perfor?mance parameters(characteristic impedance and mechanical attenuation factor) of substrate,piezoelectric film and electrode constituting HBAR on Qm are carried out. The relationships between Qm and these parameters are obtained by a lumped parameter equivalent circuit instead of distributed parameter equivalent circuit near the resonance frequency, and the an?alytical expressions oi Qm are given. The results show that Qm increases non-monotonically with the continuous increase of the substrate thickness for HBAR with certain piezoelectric film thickness, and it approaches to the substrate material mechanical quality factor as the substrate thickness is large. Qm decreases wavily with the continuous increase of the piezoelectric film thickness for HBAR with certain substrate thickness. Sapphire and YAG with low mechanical loss are appropriate as the substrate to get a larger Qm- The electrode loss must be considered since it can reduce Qm- Compared with Au electrode, A1 electrode with lower loss can obtain higher Qm when the appropriate electrode thickness is selected. In addition, Qm decreases with the increase of frequency. These results provide the theoretical basis for optimizing the parameters of HBAR and show that trade-oflFs between Qm and must be considered in the design because their changes are often inconsistent.  相似文献   

12.
卞雷祥  文玉梅  李平 《物理学报》2009,58(6):4205-4213
分析和推导了磁致伸缩/压电叠层复合材料的机-电耦合系数、磁-机耦合系数及磁-电耦合系数与磁致伸缩层和压电层性能参数及几何参数之间的关系.进一步分析表明,叠层复合材料低频时的磁电电压系数正比于磁-电耦合系数,谐振时的磁电电压系数正比于磁-电耦合系数与机械品质因素的乘积;磁电电压系数还与复合结构的本征阻抗有关,本征阻抗越大磁电电压系数越大.通过性能差异较大的Terfenol-D和FeNi基弹性合金分别与压电材料PZT5-H和PZT8相互组合构成复合材料的比较分析,进一步阐明了磁电复合材料磁-电耦合系数和机械品 关键词: 磁电效应 磁-机-电耦合系数 磁致伸缩材料 压电材料  相似文献   

13.
许龙  范秀梅 《应用声学》2021,40(6):878-888
提出了一种阶梯圆环径向振动压电超声换能器,根据力电类比原理建立了阶梯圆环及阶梯圆环换能器的径向振动等效电路,推导了阶梯圆环的径向共振频率方程和位移放大系数,在此基础上进一步推导了换能器的径向共振和反共振频率方程。通过理论推导和有限元仿真模拟分析了阶梯圆环压电超声换能器的径向振动性能。结果表明,增大阶梯圆环中内外环的径向厚度之比K1或减小轴向厚度之比K2,阶梯圆环的一阶径向共振频率减小,二阶径向共振频率增大;在二阶径向共振模式下,K1、K2值在一定范围内阶梯圆环可实现由内向外的径向位移振幅放大;随着压电陶瓷圆环的内半径增大,阶梯圆环压电超声换能器的一阶、二阶径向共振和反共振频率减小,二阶径向共振下的有效机电转换系数趋于零;增大阶梯圆环内环的外半径,换能器的一阶径向共振和反共振频率减小,二阶径向共振和反共振频率先增大后减小,理论推导与仿真模拟结果符合良好。本文研究结果为阶梯圆环压电超声换能器的工程应用提供理论参考。  相似文献   

14.
提出一种三元径向复合圆柱压电超声换能器,并对其径向振动特性进行了研究。基于弹性力学理论及机电类比原理,导出了柱坐标系中分割处理径向极化压电陶瓷管准厚度模振动及薄壁短圆管径向振动的机电等效电路;利用径向力和振速连续的边界条件,得出了径向复合圆柱压电换能器系统的径向振动机电等效电路及其共振频率方程。探讨了换能器径向共振频率及有效机电耦合系数随其几何尺寸的变化关系。研究表明,换能器的径向共振频率及有效机电耦合系数随其内芯半径和预应力管壁厚度增大而降低。研制了一些径向复合圆柱压电换能器,并对其径向共振频率进行了测试。结果表明,理论与实验结果基本一致。   相似文献   

15.
Xu CH  Hu JH  Chan HL 《Ultrasonics》2002,39(10):735-742
Ring-shaped lead zirconate titanate (PZT) piezoelectric vibrators were subjected to non-uniform mechanical stress applied by bolt clamping. The effect of mechanical stress on the effective electromechanical coupling factor (keff) and mechanical quality factor (Qm) of the thickness and wall thickness modes was studied by an equivalent electric circuit analysis. The initiation and propagation of cracks under mechanical stress were also discussed based on the resonance method and the indentation technique. keff for both the thickness and wall thickness modes decreased with increase in mechanical stress due to de-poling of the PZT. Qm of the thickness mode dropped sharply with increase in mechanical stress while Qm of the wall thickness mode remained almost unchange. Existence of microcracks in a PZT vibrator can be detected by the occurrence of spurious vibrations at the wall thickness mode in the electrical impedance vs. frequency spectra.  相似文献   

16.
Saffar S  Abdullah A 《Ultrasonics》2012,52(1):169-185
The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. One major problem of ultrasonic transducers, radiating acoustic energy into air, is to find the proper acoustic impedances of one or more matching layers. This work aims at developing an original solution to the acoustic impedance mismatch between transducer and air. If the acoustic impedance defences between transducer and air be more, then finding best matching layer(s) is harder. Therefore we consider PZT (lead zirconate titanate piezo electric) transducer and air that has huge acoustic impedance deference. The vibration source energy (PZT), which is used to generate the incident wave, consumes a part of the mechanical energy and converts it to an electrical one in theoretical calculation. After calculating matching layers, we consider the energy source as layer to design a transducer. However, this part of the mechanical energy will be neglected during the mathematical work. This approximation is correct only if the transducer is open-circuit. Since the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realized and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness and different attenuation enabling a compensation of non-ideal real values by changing their thickness was computer analyzed (base on genetic algorithm). Firstly, three theoretical solutions were investigated. Namely, Chebyshev, Desilets and Souquet theories. However, the obtained acoustic impedances do not necessarily correspond to a nowadays available material. Consequently, the values of the acoustic impedances are switched to the nearest values in a large material database. The switched values of the acoustic impedances do not generally give efficient transmission coefficients. Therefore, we proposed, in a second step, the use of a genetic algorithm (GA) to select the best acoustic impedances for matching layers from the material database for a narrow band ultrasonic transducer that work at frequency below the 2.5 MHz by considering attenuation. However this bank is rich, the results get better. So the accuracy of the propose method increase by using a lot of materials with exact data for acoustic impedance and their attenuation, especially in high frequency. This yields highly more efficient transmission coefficient. In fact by using increasing number of layer we can increase our chance to find the best sets of materials with valuable both in acoustic impedance and low attenuation. Precisely, the transmission coefficient is almost equal to unity for the all studied cases. Finally the effect of thickness on transmission coefficient is investigated for different layers. The results showed that the transmission coefficient for air media is a function of thickness and sensitive to it even for small variation in thickness. In fact, the sensitivity increases when the differences of acoustic impedances to be high (difference between PZT and air).  相似文献   

17.
A radial cascaded composite ultrasonic transducer is analyzed.The transducer consists of three short metal tubes and two radially polarized piezoelectric ceramic short tubes arranged alternately along the radial direction.The short metal tubes and the piezoelectric ceramic short tubes are connected in parallel electrically and in series mechanically,which can multiply the input sound power and sound intensity.Based on the theory of plane stress,the electro-mechanical equivalent circuit of radial vibration of the transducer is derived firstly.The resonance/anti-resonance frequency equation and the expression of the effective electromechanical coupling coefficient are obtained.Excellent electromechanical characteristics are determined by changing the radial geometric dimensions.Two prototypes of the transducers are designed and manufactured to support the analytical theory.It is concluded that the theoretical resonance/anti-resonance frequencies are consistent with the numerical and experimental results.When R_2 is at certain values,both the anti-resonance frequency and effective electromechanical coupling coefficient corresponding to the second mode have maximal values.The radial cascaded composite ultrasonic transducer is expected to be used in the fields of ultrasonic water treatment and underwater acoustics.  相似文献   

18.
Effective electromechanical coupling coefficients are defined based on the expression for the internal energy of a piezoelectric body [B. S. Aronov, "Energy analysis of a piezoelectric body under nonuniform deformation," J. Acoust. Soc. Am. 113, 2638-2646 (2003)]. The condition is considered under which the effective coupling coefficient can be maximized up to the value of the material coupling coefficient for any given distribution of deformation. A simple practical way to optimize the effective coupling coefficient of a transducer by changing its electrode shape is illustrated with examples of transducers vibrating in longitudinal and flexural modes.  相似文献   

19.
An electromechanical model of the piezoelectric effect induced in an acoustic resonator based on a ferroelectric film under the action of a dc or weak ac voltage is developed. The basic equation is obtained by expansion of the free energy in a series with respect to the electric induction and the mechanical deformation. The system of electromechanical equations for variable components of the induction and the mechanical deformation involves all linear terms along with the component of the electrostriction nonlinear with respect to the mechanical deformation. These electromechanical equations made it possible to obtain a one-dimensional approximation for the effective parameters of the material: the piezoelectric modulus and the elastic modulus as a function of the strength of the electric field applied to the acoustic layer. Expressions for the controlled electromechanical coupling coefficient and resonance frequencies of the tunable acoustic resonator are found. It is shown that the most significant parameter responsible for the tuning is the nonlinear electros-triction coefficient M, whose magnitude and sign were evaluated from the available experimental data.  相似文献   

20.
In this paper, shear-horizontal (SH) acoustic wave propagation in metal gratings deposited on piezoelectric bounded plates is investigated. The spectral characteristics of the electromechanical coupling coefficient are studied first, which are very important for acoustic wave device designs. And, an effective mathematic method based on even- and odd base functions is also presented for overcoming the large frequency thickness product problem. Then, the characteristics of the grating modes are studied, and the nature and characteristics of the stop bands are investigated fully. The results show that the width and attenuation of the stop bands are dominated by the electromechanical coupling coefficient at the frequency centers of the stop bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号