首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多复变数函数的Schwarz引理   总被引:2,自引:0,他引:2  
陆启铿 《数学学报》1957,7(3):370-420
<正> §1.内容的简单介绍当试把Schwarz引理推广到多个复变数论者,曾有H.Cartan,Carathéo-dory,Bergmann,Bochner-Martin,Bureau,Фукс,Ozaki-Kashiwagi-Tsuboi,Sthr.但从这许多的前人之结果中,仍然使人产生一问题,就是Schwarz 引理能否推广与在什么意义下能推广.  相似文献   

2.
龚昇 《数学学报》1957,7(4):471-476
<正> 本文主要的目的是来证明定理1.设■域是 n 个复变数■=(z~1,…,z~n)空间中的简单域且为Einstein空间(不失一般性,不妨假设其 Ricci 曲率为-1),其Bergman度量为  相似文献   

3.
In this note, we consider a holomorphic mapping f from the unit disk D in C to p-ball Bp={z ∈Cn:∑ni=1|zi|p1},1p+∞. It is proved that for such f,|▽||f||(z)|≤1-||f(z)||2/1-|z|2,z∈D.The extremal problem is also discussed when p is an even number. This result extends some related results on Schwarz lemma.  相似文献   

4.
本又把Weaklyarbitrage-free和Striedyarbitrage-free从Eadidean空间拓广到无限维空间,从而得到拓广的Minkowski-Farkas引理和Stiemke引理.  相似文献   

5.
1引言平面弹性方程在水利土建等工程技术领域有着广泛应用.其中,孔边应力集中等问题,都是无界区域问题.我们可以通过各种实验手段研究上述问题.而随着计算机和有限元技术的迅猛发展,数值解法提供了一种研究上述问题的有效途径.对于有界区域上的平面弹性方程,我们可以直接利用有限元方法求解,对于其中的大规模问题可以利用区域分解和并行技术求解.但这些方法难以处理无界区域问题.虽然对于某些典型区域上的外问题(例如,圆孔外区域和_些规则形状裂纹)可以针对具体情况利用复变函数论方法予以解决,但对于一般的无界区域问题广…  相似文献   

6.
In this paper, we introduce two Schwarz type domain decomposition algorithms for solving boundary element equations, which decompose the original problem defined on global boundary surface into several ones defined on sub-domains so that they may be solved ileratively or parallelly. The convergence of these methods are also proved.  相似文献   

7.
Based on Bernstein's Theorem, Kalandia's Lemma describes the error estimate and the smoothness of the remainder under the second part of Holder norm when a Holder function is approximated by its best polynomial approximation. In this paper, Kalandia's Lemma is generalized to the cases that the best polynomial is replaced by one of its four kinds of Chebyshev polynomial expansions, the error estimates of the remainder are given out under Holder norm or the weighted Holder norms.  相似文献   

8.
1.IntroductionManyproblemsarisinginfluidmechanicsaregiveninanunboundeddomain,suchasfluidflowaroundobstacles.Whencomputingthenumericalsolutionsoftheseproblems,oneoftenintroducesartificialboundariesandsetsupaxtificialboundaryconditionsonthem.Thentheoriginal…  相似文献   

9.
10.
张林波  张胜 《计算数学》1992,14(4):460-466
§1.松弛方法 我们讨论二阶自共轭椭圆型方程的Dirichlet问题.设Ω?R~2为一多边形区域. a(u,v)=(f,v),v∈H_0~1(Ω),f∈H~(-1)(Ω), u∈H_0~1(Ω)是定义在其上的边值问题的变分形式,这里取齐次边界条件仅为叙述问题方便.双线性型a(·,·)满足:  相似文献   

11.
共振情况下m点p-Laplacian算子边值问题解的存在性   总被引:4,自引:0,他引:4  
本文研究了在共振情况下m点P-Laplacian算子边值问题解的存在性问题.在非线性项f(t,u,v)有界的条件下,根据Mawhin的连续定理和m点P-Laplacian算子的边值问题的上下解理论,得出共振问题解的存在的结论.  相似文献   

12.
Consider the linear systemAx=b,(1)where A∈R~(n×n) is nonsingular.The additive Schwarz method was introduced in the last century.Recently,themethod has been used for solving general algebraic system of linear equations (1) in paral-lel computer (see [1]).This iterative method can be considered as a general multisplit-ting,in which the corresponding iterates x~n,l,l=1,2,…,k,are given by  相似文献   

13.
本文主要讨论一类角度为θ=π/α,α≥1/2的扇形域上高阶多解析方程的Schwarz边值问题.通过构造适当的高阶-Schwarz算子和Pompeiu算子,我们给出了详细的解表达式.本文把边值问题进一步推广到高阶情形,丰富了扇形域上边值问题的发展.  相似文献   

14.
王健 《数学杂志》2014,34(1):79-84
本文研究了文献[1]所引入的Orlicz投影体问题.利用Orlicz投影体在线性变换下的不变性,获得了椭球的Orlicz投影体仍是椭球的结果.作为例子,计算了当取两个特定的凸函数时单位球的Orlicz投影体的支持函数.  相似文献   

15.
We consider the numerical approximations of the complex amplitude in a coupled bayriver system in this work. One half-circumference is introduced as the artificial boundary in the open sea, and one segment is introduced as the artificial boundary in the river if the river is semi-infinite. On the artificial boundary a sequence of high-order artificial boundary conditions are proposed. Then the original problem is solved in a finite computational domain, which is equivalent to a variational problem. The numerical approximations for the original problem are obtained by solving the variational probiem with the finite element method. The numerical examples show that the artificial boundary conditions given in this work are very effective.  相似文献   

16.
Matsokin与Nepomnyaschikh所提出的不重叠型S交替法的算法中不含有松弛因子,我们知道它有与h无关的几何收敛速度,但由于不含算法参数,该算法不能根据具体的情况加速收敛,本文提出加速收敛算法,我们在原算法的基础上引入两个松弛因子θ2,θ2并证明了除了例外均可实现加速收敛,θ1=θ^-1,θ2=θ^-2是满足均衡条件的最佳松弛因子,最后的算例表明该加速算法的有效性。  相似文献   

17.
BLOW-UPATTHEBOUNDARYFORDEGENERATEDIFFUSIONEQUATION¥CaoZhenchao(Dept.ofMath.,XiamenUniv.Xiamen361005)Abstract:Inthispaperconsi...  相似文献   

18.
对一类边界上非平凡耦合的抛物型系统进行了数值模拟.为验证已有的关于是否出现爆破的理论成果,先用固定网格算法针对四种具体的边界条件进行试验,并根据不同的初始数据分组.为了进一步探讨爆破发生的时刻、位置以及爆破速率,再用移动网格算法针对可能出现爆破现象的两组边界条件和初始数据进行试验,并根据不同的监测函数分组.随后对算法的有效性做出说明并分析试验结果.最后对系统的一种特殊情况给出一个算例.  相似文献   

19.
The concept of elastic moment tensor occurs in several interesting contexts, in particular in imaging small elastic inclusions and in asymptotic models of dilute elastic composites. In this paper, we compute the elastic moment tensors for ellipses and ellipsoids by using a systematic method based on layer potentials. Our computations reveal an underlying elegant relation between the elastic moment tensors and the single layer potential.  相似文献   

20.
The present paper is concerned with the nonlinear elliptic system of second order. Firstly, we shall establish a complex form of the system. Secondly .we shall consider the solvability of some boundary value problems for tbe complex equation of second order. let (1) \[{\Phi _j}(x,y,U,V,{U_x},{U_y},...,{U_{xx}},{U_{yy}},{V_{xx}},{V_{xy}},{V_{yy}}) = 0,j = 1,2\] be the I. G. Petrowkii’s nonlinear elliptic system of second Qrder in the botinded domain G, where \[{\Phi _j}(x,y,{z_1},...,{z_{12}})(j = 1,2)\]) are continuous real functions of the variables \[x,y[(x,y) \in G],{z_1},...,{z_{12}} \in R\], (the real axis), and contiriupusly differentiable for \[{z_1},...,{z_{12}} \in R\]. The solutions \[[U(x,y),V(x,y)]\], F(a?, y)] of the system are understood in the generalized sense. THEOBEM I. i) If the I. G. Petrovskii;s nonlinear system of equations (1) satisfies the M. I. visik-D. Xiagi’s uniformly elliptic condition for any solutions U(x,y),V(x,y) of (1) in G, then it can be written as the following complex equation? (2)\[{W_{z\overline z }} = F(z,W,{W_z},\overline {{W_z}} ,{W_{zz}},{\overline W _{zz}})\] where W=U+iV, z=x+iy, \[{W_z} = \frac{1}{2}[{W_x} - i{W_y}],...,\], ii) If the I. G. Petrovskii's nonlinear elliptic system (1) satisfies the condition that there exist two positive constants \[\delta \] and K, such that (3) \[|{\Phi _{j{U_{xx}}}}|,|{\Phi _{j{U_{xy}}}}|,|{\Phi _{j{U_{yy}}}}|,|{\Phi _{j{V_{xx}}}}|,|{\Phi _{j{V_{xy}}}}|,|{\Phi _{j{V_{yy}}}}| \leqslant K,j = 1,2\] \[|det(A)| \geqslant \delta > 0\], in G, then by a suitable linear trans-formation of the variables (x,y)into variables \[(\xi ,\eta )\], system (1) can be written as the following coinplex equation ⑷ \[{W_{\xi \xi }} = F(\xi ,W,{W_\xi },{\overline W _\xi },{W_{\xi \xi }},{\overline W _{\xi \xi }}),\varsigma = \xi + i\eta \] In the following section, we discuss the complex equation (2) of the following form: ,We^B(z9 Wee)x .\[(5)\left\{ \begin{gathered} {W_{zz}} = F(z,W,{W_z},{\overline W _z},{W_{zz}},{\overline W _{zz}}) \hfill \ F = {Q_1}{W_{zz}} + {Q_2}\overline {{W_{\overline z \overline z }}} + {Q_4}{W_{zz}} + {A_1}{W_z} + {A_2}{\overline W _{\overline z }} \hfill \ + {A_3}\overline {{W_z}} + {A_4}{W_{\bar z}} + {A_5}W + {A_6}\bar W + {A_7}, \hfill \ {Q_j} = {Q_j}(z,W,{W_{\bar z}},{\overline W _{\bar z}},{W_{zz}},{\overline W _{zz}}),j = 1,...,4 \hfill \ {A_j} = {A_j}(z,W,{W_z},{\overline W _z}),j = 1,...,7 \hfill \\ \end{gathered} \right.\] 1) \[{Q_j}(z,W,{W_z},{\overline W _z},U,V),j = 1,...,4.{A_j} = (z,W,{W_z},{\overline W _z}),j = 1,...,7\] are measurable functions of z for any continuously differentiable functions W(z) and measurable functions U(z), V(z) in G, Furthermore they satisfy (6)\[{\left\| {{A_j}} \right\|_{{L_p}(\overline {G)} }} \leqslant {K_0},j = 1,2,{\left\| {{A_j}} \right\|_{{L_p}(\overline {G)} }} \leqslant {K_1},j = 3,...,7\] where\[{K_0},{K_1}( \leqslant {K_0}),p( > 2)\] are constants: 2) Qj, Aj are continuous for \[W,{W_z},{\overline W _z} \in E\](the whole plane) and the continuity is uniform with respect to almost every point \[z \in G\] and \[U,V \in E\] 3) \[F(z,W,{W_z},{\overline W _z},U,V)\] satisfies the following Lipschitz's condition, i.e. for almost every point \[z \in G\], and for all \[W,{W_z},{\overline W _z}{U_1},{U_2},{V_1},{V_2} \in E\], the inequality (7)\[\begin{gathered} |F(z,W,{W_z},{\overline W _z},{U_1},{V_1}) - F(z,W,{W_z},{\overline W _z},{U_2},{V_2})| \hfill \ \leqslant {q_0}|{U_1} - {U_2}| + q_0^'|{V_1} - {V_2}|,{q_0} + q_0^' < 1 \hfill \\ \end{gathered} \] holds where \[{q_0},q_0^'\] are two nonnegative constants. In this paper, let G be a simply connected domain with boundary \[\Gamma \in C_\mu ^2(0 < \mu < 1)\]; without loss of geaerality, we may assume that G is the unit disk |z|<1. Now we, describe the results of the solvability of Riemann-Hilbert botindary value problem (Problem R-H) and the oblique derivative problem (Problem P) for Eq. (5) in the unit disk G: |z| <1. Problem R-H. We try to find a solution W(z)of Eq. (5) which is continuonsly differentiable on \[G\], and satisfies the boundary conditions: (8) \[\operatorname{Re} [{{\bar z}^{{\chi _1}}},{W_z}] = {r_1}(z),Re[{{\bar z}^{{\chi _2}}}\overline {W(z)} ] = {r_2}(z),z \in \Gamma \]? where \[{\chi _1},{\chi _2}\] are two integers, and \[{r_j} \in C_v^{j - 1}(\Gamma ),j = 1,2,\frac{1}{2} < v < 1\] Problem P. we try to find a solution W(z) of Eq. (5) which is continuously diffierentiabfe on \[\overline G \] and satisfies the boundaory conditions: (9) \[\operatorname{Re} [{{\bar z}^{{\chi _1}}}{W_z}] = {r_1}(z),Re[{{\bar z}^{{\chi _2}}}\overline {W(z)} ] = {r_2}(z),z \in \Gamma \], Where \[{\chi _1},{\chi _2},{r_1}(z),{r_2}(z)\] are the same as in (8), but \[{r_2}(z) \in {C_v}(\Gamma )\]. Theorem II. Suppose that Eq. (5) satisfies the condition C and the constants \[q_0^'\] and K1 are adequately small; then the solvability of Problem R-H is as follows: 1) When \[{\chi _1} \geqslant 0,{\chi _2} \geqslant 0\] Problem R-H is solvable; 2) When \[{\chi _1} < 0,{\chi _2} \geqslant 0(or{\kern 1pt} {\kern 1pt} {\chi _1} \geqslant 0,{\chi _2} < 0){\kern 1pt} \] there are \[2|{\chi _1}| - 1(or2|{\chi _2}| - 1)\] solvable conditions for Problem R-H; 3) WHen \[{\chi _1} < 0,{\chi _2} < 0\], there are \[2(|{\chi _1}| + |{\chi _2}| - 1)\] solvable conditions for Problem R-H. Theorem III Let Eq (5) satisf the condition C and the constants \[q_0^'\] and \[{K_1}\] are adequately small, then tbe solvability of Problem P is as follows: 1) When \[{\chi _1} \geqslant 0,{\chi _2} \geqslant 0\] Problem P is solvable; 2) When \[{\chi _1} < 0,{\chi _2} \geqslant 0(or{\kern 1pt} {\kern 1pt} {\chi _1} \geqslant 0,{\chi _2} < 0){\kern 1pt} {\kern 1pt} {\kern 1pt} \], there are \[2|{\chi _1}| - 1(or2|{\chi _2}| - 1)\] solvable conditions for Problem P; 3) When \[{\chi _1} < 0,{\chi _2} < 0\]; there are \[2|{\chi _1}|{\text{ + }}|{\chi _2}| - 1)\] solvable conditions for Problem P. Furthermore, the solution W(z) of Problem P for Eq. (5) may be expressed as \[{g_j}(\xi ,z) = \left\{ \begin{gathered} \int_0^z {\frac{{{z^{2{\chi _j} + 1}}}}{{1 - \bar \xi z}}dz,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} for{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\chi _j} \geqslant 0} \hfill \ \int_0^z {\frac{{{\xi ^{ - 2{\chi _j} - 1}}}}{{1 - \bar \xi z}}dz,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} for{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\chi _j} < 0} \hfill \\ \end{gathered} \right.j = 1,2\] where \[{\Phi _0}(z) = a + ib\] is a complex constant,and \[{\Phi _1}(z),{\Phi _2}(z)\] are two analytic functions. The proofs of the above stated theorems are based on a prior estimates for the bounded solutes of these boundary value problems and Leray-Schander theorem. Besides, we have considered also the solvability of Problem R-H and Problem P for Eq. (6) in the multiply connected domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号