首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study is devoted to the experimental validation of a theoretical model of large amplitude vibrations of thin spherical shells described in a previous study by the same authors. A modal analysis of the structure is first detailed. Then, a specific mode coupling due to a 1:1:2 internal resonance between an axisymmetric mode and two companion asymmetric modes is especially addressed. The structure is forced with a simple-harmonic signal of frequency close to the natural frequency of the axisymmetric mode. The experimental setup, which allows precise measurements of the vibration amplitudes of the three involved modes, is presented. Experimental frequency response curves showing the amplitude of the modes as functions of the driving frequency are compared to the theoretical ones. A good qualitative agreement is obtained with the predictions given by in the model. Some quantitative discrepancies are observed and discussed, and improvements of the model are proposed.  相似文献   

2.
This paper presents an analytical approach to investigate the non-linear axisymmetric response of functionally graded shallow spherical shells subjected to uniform external pressure incorporating the effects of temperature. Material properties are assumed to be temperature-independent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. Equilibrium and compatibility equations for shallow spherical shells are derived by using the classical shell theory and specialized for axisymmetric deformation with both geometrical non-linearity and initial geometrical imperfection are taken into consideration. One-term deflection mode is assumed and explicit expressions of buckling loads and load-deflection curves are determined due to Galerkin method. Stability analysis for a clamped spherical shell shows the effects of material and geometric parameters, edge restraint and temperature conditions, and imperfection on the behavior of the shells.  相似文献   

3.
In this paper,the large deflection theory of symmetrically laminated cylindricallyorthotropic shallow spherical shells is established.Based on this theory,applying themodified iteration method,the analytic solution for critical buckling loads of the shells withrigidly clamped edges under actions of uniform pressure has been obtained.  相似文献   

4.
采用适于夹层壳的直线假设扁壳理论,应用三角级数法,导出了扁球壳齐次方程的解析解。进而分析了在顶点作用法向集中力和在偏心集中力作用下的解。计算了在偏心集中力作用下带孔球壳的位移和应力,并将结果与经典理论的结果进行了比较分析,结果表明,在集中力作用处和孔边处两种理论结果明显不同。  相似文献   

5.
Mathematical modeling of evolutionary states of non-homogeneous multi-layer shallow shells with orthotropic initial imperfections belongs to one of the most important and necessary steps while constructing numerous technical devices, as well as aviation and ship structural members. In first part of the paper fundamental hypotheses are formulated which allow us to derive Hamilton–Ostrogradsky equations. The latter yield equations governing shell behavior within the applied hypotheses and modified Pelekh–Sheremetev conditions. The aim of second part of the paper is to formulate fundamental hypotheses in order to construct coupled boundary problems of thermo-elasticity which are used in non-classical mathematical models for multi-layer shallow shells with initial imperfections. In addition, a coupled problem for multi-layer shell taking into account a 3D heat transfer equation is formulated. Third part of the paper introduces necessary phase spaces for the second boundary value problem for evolutionary equations, defining the coupled problem of thermo-elasticity for a simply supported shallow shell. The theorem regarding uniqueness of the mentioned boundary value problem is proved. It is also proved that the approximate solution regarding the second boundary value problem defining condition for the thermo-mechanical evolution for rectangular shallow homogeneous and isotropic shells can be found using the Bubnov–Galerkin method.  相似文献   

6.
A dynamic nonlinear theory for layered shallow shells is derived by means of the von Karman-Tsien theory, modified by the generalized Berger-approximation. Moderately thick shells with polygonal planform composed of multiple perfectly bonded layers are considered. The shell edges are assumed to be prevented from in-plane motions and are simply supported. A distributed lateral force loading is applied to the structure, and additionally, the influence of a static thermal prestress, corresponding to a spatial distribution of cross-sectional mean temperature, is taken into account. In the special case of laminated shells made of transversely isotropic layers with physical properties symmetrically distributed about the middle surface, a correspondence to moderately thick homogeneous shells is found. Application of a multi-mode expansion in the Galerkin procedure to the governing differential equation, where the eigenfunctions of the corresponding linear plate problem are used as space variables, renders a coupled set of ordinary time differential equations for the generalized coordinates with cubic as well as quadratic nonlinearities. The nonlinear steady-state response of shallow shells subjected to a time-harmonic lateral excitation is investigated and the phenomenon of primary resonance is studied by means of the perturbation method of multiple scales. A unifying non-dimensional representation of the nonlinear frequency response function is presented that is independent of the special shell planform.  相似文献   

7.
The free non-linear vibration of a rotating beam has been considered in this paper. The von Karman strain-displacement relations are implemented. Non-linear equations of motion are obtained by Hamilton’s principle. Results are obtained by applying the method of multiple scales to a set of discretized ordinary differential equations which obtained by using the Galerkin discretization method. This set contains coupling between transverse and axial displacements as quadratic and cubic geometric non-linearities. Non-linear normal modes and non-linear natural frequencies with or without internal resonance are observed. In the internal resonance case, the internal resonance between two transverse modes and between one transverse and one axial mode are explored. Obtained results in this study are compared with those obtained from literature. The stability and some dynamic characteristics of the non-linear normal modes such as the phase portrait, Poincare section and power spectrum diagrams have been inspected. It is shown that, for the first internal resonance case, the beam has one stable or degenerate uncoupled mode and either: (a) one stable coupled mode, (b) one unstable coupled mode, (c) two stable and one unstable coupled modes, (d) three stable coupled modes, and (e) one stable coupled mode. On the other hand, for the second internal resonance case, the beam has one stable or unstable or degenerate uncoupled mode and either: (a) two stable coupled modes, (b) two unstable coupled modes, and (c) one stable coupled mode depending on the parameters.  相似文献   

8.
爆炸冲击下复合材料层合扁球壳的动力屈曲   总被引:1,自引:0,他引:1  
研究计及横向剪切的复合材料层合扁球壳在爆炸冲击载荷作用下的非线性轴对称动力屈曲问题。通过在复合材料层合扁球壳非线性稳定性的基本方程中增加横向转动惯量项并引入R.H.Cole理论的爆炸冲击力,得到爆炸冲击下复合材料层合扁球壳的动力控制方程,应用Galerkin方法得到用顶点挠度表达的爆炸冲击动力响应方程,并采用Runge-Kutta方法进行数值求解,采用Budiansky-Roth准则确定冲击屈曲的临界载荷,讨论了壳体几何尺寸对复合材料层合扁球壳冲击屈曲的影响;数值算例表明,此方法是可行的。  相似文献   

9.
The general conditions, obtained in Lacarbonara and Rega (Int. J. Non-linear Mech. (2002)), for orthogonality of the non-linear normal modes in the cases of two-to-one, three-to-one, and one-to-one internal resonances in undamped unforced one-dimensional systems with arbitrary linear, quadratic and cubic non-linearities are here investigated for a class of shallow symmetric structural systems. Non-linear orthogonality of the modes and activation of the associated interactions are clearly dual problems. It is known that an appropriate integer ratio between the frequencies of the modes of a spatially continuous system is a necessary but not sufficient condition for these modes to be non-linearly coupled. Actual activation/orthogonality of the modes requires the additional condition that the governing effective non-linear interaction coefficients in the normal forms be different/equal to zero. Herein, a detailed picture of activation/orthogonality of bimodal interactions in buckled beams, shallow arches, and suspended cables is presented.  相似文献   

10.
The non-linear normal modes (NNMs) and their bifurcation of a complex two DOF system are investigated systematically in this paper. The coupling and ground springs have both quadratic and cubic non-linearity simultaneously. The cases of ω1:ω2=1:1, 1:2 and 1:3 are discussed, respectively, as well as the case of no internal resonance. Approximate solutions for NNMs are computed by applying the method of multiple scales, which ensures that NNM solutions can asymtote to linear normal modes as the non-linearity disappears. According to the procedure, NNMs can be classified into coupled and uncoupled modes. It is found that coupled NNMs exist for systems with any kind of internal resonance, but uncoupled modes may appear or not appear, depending on the type of internal resonance. For systems with 1:1 internal resonance, uncoupled NNMs exist only when coefficients of cubic non-linear terms describing the ground springs are identical. For systems with 1:2 or 1:3 internal resonance, in additional to one uncoupled NNM, there exists one more uncoupled NNM when the coefficients of quadratic or cubic non-linear terms describing the ground springs are identical. The results for the case of internal resonance are consistent with ones for no internal resonance. For the case of 1:2 internal resonance, the bifurcation of the coupled NNM is not only affected by cubic but also by quadratic non-linearity besides detuning parameter although for the cases of 1:1 and 1:3 internal resonance, only cubic non-linearity operate. As a check of the analytical results, direct numerical integrations of the equations of motion are carried out.  相似文献   

11.
12.
Summary The static and dynamic responses of anisotropic spherical shells under a uniformly distributed transverse load are investigated. Analytical solutions using the mixed variational formulation are presented for spherical shells subjected to various boundary conditions. Numerical results of a refined mixed first-order shear deformation theory for natural frequencies, critical buckling, center deflections and stresses are compared with those obtained using the classical shell theory. A variety of simply-supported and clamped boundary conditions are considered and comparisons with the existing literature are made. The sample numerical results presented herein for global structural behaviour of monoclinic spherical shells should serve as references for future comparisons.  相似文献   

13.
The free-parameter perturbation method is applied to solve the problems of nonlinear stability of spherical shallow shells under uniform load. As a modified perturbation method, the free-parameter perturbation method enables researchers to obtain all characteristic relations without choosing the certain perturbation parameter. Some examples were discussed to study the variety regulations of deflections and stress of shells in the process of buckling, and the results were compared with those of other researchers.  相似文献   

14.
The non-linear modal properties of a vibrating 2-DOF system with non-smooth (piecewise linear) characteristics are investigated; this oscillator can suitably model beams with a breathing crack or systems colliding with an elastic obstacle. The system having two discontinuity boundaries is non-linearizable and exhibits the peculiar feature of a number of non-linear normal modes (NNMs) that are greater than the degrees of freedom. Since the non-linearities are concentrated at the origin, its non-linear frequencies are independent of the energy level and uniquely depend on the damage parameter. An analysis of the NNMs has been performed for a wide range of damage parameter by employing numerical procedures and Poincaré maps. The influence of damage on the non-linear frequencies has been investigated and bifurcations characterized by the onset of superabundant modes in internal resonance, with a significantly different shape than that of modes on fundamental branch, have been revealed.  相似文献   

15.
The non-linear vibration of simply supported, circular cylindrical shells is analysed. Geometric non-linearities due to finite-amplitude shell motion are considered by using Donnell's non-linear shallow-shell theory; the effect of viscous structural damping is taken into account. A discretization method based on a series expansion of an unlimited number of linear modes, including axisymmetric and asymmetric modes, following the Galerkin procedure, is developed. Both driven and companion modes are included, allowing for travelling-wave response of the shell. Axisymmetric modes are included because they are essential in simulating the inward mean deflection of the oscillation with respect to the equilibrium position. The fundamental role of the axisymmetric modes is confirmed and the role of higher order asymmetric modes is clarified in order to obtain the correct character of the circular cylindrical shell non-linearity. The effect of the geometric shell characteristics, i.e., radius, length and thickness, on the non-linear behaviour is analysed: very short or thick shells display a hardening non-linearity; conversely, a softening type non-linearity is found in a wide range of shell geometries.  相似文献   

16.
Based on the differential equation of the nonlinear bending of shallow sphericalshells with variable thickness under axisymmetrical loads,this paper studies thenumerical solution of the nonlinear differential equation by means of interpolatingmatrix method.The analysis of the results indicates that the suggested method is easyto implement and obtains the same high accuracy for both the displacements and theinternal forces.  相似文献   

17.
Resonant multi-modal dynamics due to planar 2:1 internal resonances in the non-linear, finite-amplitude, free vibrations of horizontal/inclined cables are parametrically investigated based on the second-order multiple scales solution in Part I [1] (in press). The already validated kinematically non-condensed cable model accounts for the effects of both non-linear dynamic extensibility and system asymmetry due to inclined sagged configurations. Actual activation of 2:1 resonances is discussed, enlightening on a remarkable qualitative difference of horizontal/inclined cables as regards non-linear orthogonality properties of normal modes. Based on the analysis of modal contribution and solution convergence of various resonant cables, hints are obtained on proper reduced-order model selections from the asymptotic solution accounting for higher-order effects of quadratic nonlinearities. The dependence of resonant dynamics on coupled vibration amplitudes, and the significant effects of cable sag, inclination and extensibility on system non-linear behavior are highlighted, along with meaningful contributions of longitudinal dynamics. The spatio-temporal variation of non-linear dynamic configurations and dynamic tensions associated with 2:1 resonant non-linear normal modes is illustrated. Overall, the analytical predictions are validated by finite difference-based numerical investigations of the original partial-differential equations of motion.  相似文献   

18.
The method of multiple scales is used to construct non-linear normal modes (NNMs) of a class of systems with three double of pure imaginary roots and 1:2:5 dual internal resonance. It is found that the three NNMs associated with dual internal resonances include two uncoupled NNMs as well as a coupled NNM. And the bifurcation problem of the coupled NNM is in two variables, which is greatly different from the bifurcation of the NNMs of systems with single internal resonance. Because no results in singularities can be straightly applied, a practical way is proposed to do singularity analysis for bifurcation of two dimensions. It is also noted that with the variation of the bifurcation parameters, the modes may convert to each other or suddenly emerge and disappear, which give rise to the number of the NNMs more or fewer than the number of the degrees of freedom.  相似文献   

19.
Based on Kármán’s nonlinear fundamental differential equations,the new approach,which combines modified iteration method with Galerkin’s one,has been put forward tosolve nonlinear bending of shallow spherical shell with concave base and clamped edges onthe Pasternak foundation under uniform loads in this paper.Mathematical expression ofload-deflection has been given;furthermore,results obtained are in good agreement withexistent ones.  相似文献   

20.
An experimental and theoretical parametric study is undertaken to investigate the effect of transmural pressure on the non-linear dynamics and stability of circular cylindrical shells with clamped ends subjected to internal fluid flow. The theoretical structural model is based on the Donnell non-linear shallow shell theory, and potential flow theory is employed to describe the fluid-structure interaction. It is found that, for low transmural pressures in the range investigated, the shell loses stability by static subcritical divergence, while for higher transmural pressures the loss of stability is supercritical. In addition, there are ranges of flow velocity in which the shell exhibits quasi-periodic or even chaotic behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号