首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Analytic and numerical analyses are carried out to ascertain whether the theories of thin and medium-thickness shells can be used to calculate the thermoelastic state of shells of revolution. It is shown that the theory of thin shells should be used in the case of thermal loading and the theory of medium-thickness shells in the case of mechanical loading __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 5, pp. 58–67, May 2008.  相似文献   

2.
A problem on thin-walled orthotropic shells of arbitrary Gaussian curvature acted upon by concentrated heat sources is solved by means of the two-dimensional Fourier transformation. The temperature is assumed to distribute linearly throughout the shell thickness. Convective heat exchange with the environment under Newton's law is taken into account. Calculated results are presented. The influence of the curvature on the thermoelastic state of various orthotropic shells is studied  相似文献   

3.
The paper outlines the fundamentals of the method of solving static problems of geometrically nonlinear deformation, buckling, and postbuckling behavior of thin thermoelastic inhomogeneous shells with complex-shaped midsurface, geometrical features throughout the thickness, or multilayer structure under complex thermomechanical loading. The method is based on the geometrically nonlinear equations of three-dimensional thermoelasticity and the moment finite-element scheme. The method is justified numerically. Results of practical importance are obtained in analyzing poorely studied classes of inhomogeneous shells. These results provide an insight into the nonlinear deformation and buckling of shells under various combinations of thermomechanical loads  相似文献   

4.
A heat-conduction problem is formulated for laminated plates and shells with a heat-conducting layer and debonding between laminas. The approach consists in analyzing how the layer thickness changes in the process of debonding of laminas and deformation of plates and shells. The three-dimensional thermoelastic and heat-conduction equations are expanded into polynomial Legendre series in thickness. The first-order, Timoshenko’s, and Kirchhoff-Love equations are examined. A numerical example of laminated shells with a heat-conducting layer is considered Published in Prikladnaya Mekhanika, Vol. 42, No. 7, pp. 135–141, July 2006.  相似文献   

5.
Within the scope of the nonlinear theory of an elastic Cosserat surface, this paper is mainly concerned with the influence of the reference geometry and the related aspects of material symmetry restriction on the response of thermoelastic shells. The significance of the effect of the reference geometry is discussed in the case of isotropic shells, which may be of variable thickness in a reference state.  相似文献   

6.
The thermoelastic bending of locally heated orthotropic shells is studied using the classical theory of thermoelasticity of thin shallow orthotropic shells and the method of fundamental solutions. Linear distribution of temperature over thickness and the Newton’s law of cooling are assumed. Numerical analysis is carried out for orthotropic shells of arbitrary Gaussian curvature made of a strongly anisotropic material. The behavior of thermal forces and moments near the zone of local heating is studied for two areas of thermal effect: along a coordinate axis and along a circle of unit radius. Generalized conclusions are drawn __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 3, pp. 80–85, March 2007.  相似文献   

7.
This article considers the thermoelastic stability of bimetallic shallow shells of revolution. Basic equations are derived from Reissner’s non-linear theory of shells by assuming that deformations and rotations are small and that materials are linear elastic. The equations are further specialized for the case of a closed spherical cup. For this case the perturbated initial state is considered and it is shown that only in the cases when the cup edge is free or simply supported buckling under heating is possible. Further the perturbated flat state is considered and the critical temperature for buckling is calculated for the case of free and simply supported edges. The temperature–deflection diagrams are calculated by the use of the collocation method for shallow spherical, conical and cubic shells.  相似文献   

8.
Summary Analysis of the axially symmetric steady state thermoelastic problem for thin shells of revolution is given, assuming temperature dependent elastic and thermal properties of the material. Three governing equations are established involving components of the displacement along and normal to the meridian as well as the shearing force.A multi-parameter perturbation scheme is used with two perturbation parameters, one associated with the shear modulus and the other with Poisson's ratio.Illustrative examples are solved concerning cylindrical, conical and spherical shells as well as compound shells, such as spherico-conical, conicocylindrical and conico-conical.The results presented in this paper are taken from a thesis by the first author submitted in partial fulfilment of the requirements for the Ph. D. degree at the University of Delaware. The research was supported by a grant of the National Science Foundation.  相似文献   

9.
A technique is proposed to solve elastoplastic deformation problems for branched shells of revolution under the action of asymmetric forces and a temperature field. The kinematic equations are derived within the framework of the linear Kirchhoff–Love theory of shells and the thermoelastic relations within the framework of the theory of small elastoplastic strains. The problem is given a variational formulation based on the virtual-displacement principle and the Fourier-series expansion of the unknown functions and loads with respect to the circumferential coordinate. The additional-load method is used to solve a nonlinear problem and the finite-elements method is used to carry out a numerical analysis. As an example, an asymmetric stress–strain analysis is performed for a cylindrical shell reinforced by a ring plate.  相似文献   

10.
In this paper we investigate the boundary-initial-value problem of the dynamic linear theory for thermoelastic Cosserat shells with voids. We prove a reciprocity relation and derive a uniqueness theorem. Then, we study the continuous dependence of the solution on external body loads and heat supply and on initial data. A variational characterization of the solution is also established.  相似文献   

11.
The resultant, two-dimensional thermomechanics of shells undergoing diffusionless, displacive phase transitions of martensitic type of the shell material is developed. In particular, we extend the resultant surface entropy inequality by introducing two temperature fields on the shell base surface: the referential mean temperature and its deviation, with corresponding dual fields: the referential entropy and its deviation. Additionally, several extra surface fields related to the deviation fields are introduced to assure that the resultant surface entropy inequality be direct implication of the entropy inequality of continuum thermomechanics. The corresponding constitutive equations for thermoelastic and thermoviscoelastic shells of differential type are worked out. Within this formulation of shell thermomechanics, we also derive the thermodynamic continuity condition along the curvilinear phase interface and propose the kinetic equation allowing one to determine position and quasistatic motion of the interface relative to the base surface. The theoretical model is illustrated by two axisymmetric numerical examples of stretching and bending of the circular plate undergoing phase transition within the range of small deformations.  相似文献   

12.
Summary A finite element formulation is derived for the thermoelastic analysis of functionally graded (FG) plates and shells. The power-law distribution model is assumed for the composition of the constitutent materials in the thickness direction. The procedure adopted to derive the finite element formulation contains the analytical through-the-thickness integration inherently. Such formulation accounts for the large gradient of the material properties of FG plates and shells through the thickness without using the Gauss points in the thickness direction. The explicit through-the-thickness integration becomes possible due to the proper decomposition of the material properties into the product of a scalar variable and a constant matrix through the thickness. The nonlinear heat-transfer equation is solved for thermal distribution through the thickness by the Rayleigh-Ritz method. According to the results, the formulation accounts for the nonlinear variation in the stress components through the thickness especially for regions with a variation in martial propperties near the free surfaces.  相似文献   

13.
We analyze the steady-state response of a functionally graded thick cylindrical shell subjected to thermal and mechanical loads. The functionally graded shell is simply supported at the edges and it is assumed to have an arbitrary variation of material properties in the radial direction. The three-dimensional steady-state heat conduction and thermoelasticity equations, simplified to the case of generalized plane strain deformations in the axial direction, are solved analytically. Suitable temperature and displacement functions that identically satisfy the boundary conditions at the simply supported edges are used to reduce the thermoelastic equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which are then solved by the power series method. In the present formulation, the cylindrical shell is assumed to be made of an orthotropic material, although the analytical solution is also valid for isotropic materials. Results are presented for two-constituent isotropic and fiber-reinforced functionally graded shells that have a smooth variation of material volume fractions, and/or in-plane fiber orientations, through the radial direction. The cylindrical shells are also analyzed using the Flügge and the Donnell shell theories. Displacements and stresses from the shell theories are compared with the three-dimensional exact solution to delineate the effects of transverse shear deformation, shell thickness and angular span.  相似文献   

14.
With the object of developing refined dynamic theories for plates, shells, beams and composites, a new technique is proposed. This technique eliminates any inconsistency between the assumed deformation or temperature shape and lateral boundary or interface conditions. Accordingly, it improves the dispersive characteristics of waves propagating in any of these structural elements. In this study the new technique is applied to thermoelastic plates. It is found that the dispersion curves predicted by the refined approximate theory duplicate very closely those derived from the exact theory without introducing any matching coefficients into the approximate theory.  相似文献   

15.
The thermoelastic problem of laser exposure of metals and dielectrics is studied taking into account the finite speed of propagation of thermal waves and using a numerical finite-difference algorithm. The resulting numerical solution is compared with the analytical one. The problem is solved in coupled and uncoupled formulations. The solutions of the hyperbolic thermoelastic problem are compared with the solutions of the classical problem. Analytical expressions are obtained for the propagation speeds of the thermoelastic wave components. Times are determined at which the difference between the solutions of the hyperbolic and classical thermoelastic problems can be detected experimentally.  相似文献   

16.
Thermoelastic damping is recognized as a significant loss mechanism at room temperature in micro-scale beam resonators. In this paper, the governing equations of coupled thermoelastic problems are established based on the generalized thermoelastic theory with one relaxation time. The thermoelastic damping of micro-beam resonators is analyzed by using both the finite sine Fourier transformation method combined with Laplace transformation and the normal mode analysis. The vibration responses of deflection and thermal moment are obtained for the micro-beams with simply supported and isothermal boundary conditions. The vibration frequency is analyzed for three boundary condition cases, i.e., the clamped and isothermal, the simply supported and isothermal, and the simply supported and adiabatic. The analytic results show that the amplitude of deflection and thermal moment are attenuated and the vibration frequency is increased with thermoelastic coupling effect being considered. In addition, it can be found from both the analytic results and the numerical calculations that these properties are size-dependent. When the thickness of the micro-beam is larger than its characteristic size, the effect of thermoelastic damping weakens as the beam thickness increases. The size-effect induced by thermoelastic coupling would disappear when the thickness of the micro-beam is over a critical value that depends on the material properties and the boundary conditions.  相似文献   

17.
The analogue procedure which the authors have proposed2 is expanded to plane thermoelastic fields, with heat generation within the region or heat transfer from both surfaces of the thermoelastic field. A plate similar to the thermoelastic field is prepared and the plate-bending test is carried out with distributed loads over the plate and with a concentrated load on the inner flange. The strains are measured carefully for each bending test and these are combined to transform into the thermal stress of the original thermoelastic field. The results are compared with theoretical or numerical ones and good agreement is confirmed among them.  相似文献   

18.
Ieşan  D.  Nappa  L. 《Meccanica》2004,39(2):125-138
This paper is concerned with the linear theory of thermoelastic materials with voids. We present a method to reduce the thermoelastic problem to an isothermal one with zero body loads and with certain known boundary data. The results are used to study the thermal stresses in a tube and the thermoelastic deformation of a cylinder subjected to a uniform temperature gradient.  相似文献   

19.
广义热弹性问题研究进展   总被引:6,自引:0,他引:6  
本文总结了广义热弹性问题最近10年的研究进展, 包括不同类型广义热弹耦合问题的研究、考虑磁\!--\!电多场耦合的广义电磁热弹耦合问题研究以及计及扩散效应和黏弹性效应的广义热弹性理论的发展、广义热弹性问题基本求解方法等, 通过总结, 使读者对广义热弹性问题的研究现状及发展趋势有较全面的认识, 帮助研究人员进一步开展广义热弹性问题更高层次的研究.   相似文献   

20.
In this paper, thermal buckling and free vibration of orthogonally stiffened functionally graded truncated conical shells in thermal environment is investigated. Conical shell has been stiffened by rings and stringers, and the influences of the stiffeners are evaluated by the aid of smearing method. The material properties of the structure are assumed to be changed continuously in the thickness direction. First, the initial thermal stresses are obtained accurately by solving the thermoelastic equilibrium equations. Then, by taking into account the initial thermal stresses, equations of motion as well as boundary conditions are obtained, applying the Hamilton’s principle and the first-order shear deformation theory. The natural frequencies of the system have been achieved, solving these governing equations with considering Differential Quadrature Method (DQM). In addition to Eigen frequency analysis, the critical buckling-temperature of the conical shell has been computed. Moreover, the effects of geometrical parameters, number of stiffeners, thermal environment and various boundary conditions on natural frequency of the system have been investigated. Finally, in order to validate the present work, the results are compared with those of other researches available in literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号