首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 205 毫秒
1.
The Multiple-Scale Method is applied directly to a one-dimensional continuous model to derive the equations governing the asymptotic dynamic of the system around a bifurcation point. The theory is illustrated with reference to a specific example, namely an internally constrained planar beam, equipped with a lumped viscoelastic device and loaded by a follower force. Nonlinear, integro-differential equations of motion are derived and expanded up to cubic terms in the transversal displacements and velocities of the beam. They are put in an operator form incorporating the mechanical boundary conditions, which account for the lumped viscoelastic device; the problem is thus governed by mixed algebraic-integro-differential operators. The linear stability of the trivial equilibrium is first studied. It reveals the existence of divergence, Hopf and double-zero bifurcations. The spectral properties of the linear operator and its adjoint are studied at the bifurcation points by obtaining closed-form expressions. Notably, the system is defective at the double-zero point, thus entailing the need to find a generalized eigenvector. A multiple-scale analysis is then performed for the three bifurcations and the relevant bifurcation equations are derived directly in their normal forms. Preliminary numerical results are illustrated for the double-zero bifurcation.  相似文献   

2.
In this paper, we study the Bogdanov?CTakens (double-zero) bifurcations for any autonomous ODEs system, and derive simple computational formulae for both critical normal forms and generic norm forms. These formulae involve only coefficients of the Taylor expansions of its right-hand sides at the equilibrium. They are equally suitable for both numerical and symbolic evaluations and conveniently allow us to classify codimension 2 Bogdanov?CTakens bifurcations. Furthermore, we can use them to check whether there exist the original parameters such that a system presents the Bogdanov?CTakens bifurcation, and compute the corresponding bifurcation curves with high precision. Two known models are used as test examples to demonstrate the advantages of this method.  相似文献   

3.
The stability of a cantilever elastic beam with rectangular cross-section under the action of a follower tangential force and a bending conservative couple at the free end is analyzed. The beam is herein modeled as a non-linear Cosserat rod model. Non-linear, partial integro-differential equations of motion are derived expanded up to cubic terms in the transversal displacement and torsional angle of the beam. The linear stability of the trivial equilibrium is studied, revealing the existence of buckling, flutter and double-zero critical points. Interaction between conservative and non-conservative loads with respect to the stability problem is discussed. The critical spectral properties are derived and the corresponding critical eigenspace is evaluated.  相似文献   

4.
A two-d.o.f.?system experiencing codimension-three double-zero/Hopf bifurcation is considered. This is a special bifurcation which simultaneously involves a defective and a nondefective pair of critical eigenvalues, therefore, requiring a perturbation method specifically tailored on it. A nonstandard version of the multiple scale method is implemented, in which fractional power expansions, both for state-variables and time are used, and high-order arbitrary amplitudes are introduced. Bifurcation equations are obtained, governing the slow flow on the center manifold, which turns out to be tangent to the space spanned by the four critical eigenvectors. These are used to analyze the transition from codimension-three to codimension-two single-zero/Hopf bifurcations, occurring when the modulus of the damping is increased from small to order-one values. Bifurcation charts are obtained, displaying the role of quasi-periodic motions in the transition.  相似文献   

5.
离心场中纵向悬臂梁的大范围分岔分析   总被引:2,自引:0,他引:2  
肖世富  陈滨 《力学学报》2000,32(5):559-565
采用打靶法研究了离心场中纵向悬臂梁的大范围失稳与分岔问题。分析结果证实:随着参数a(离心臂长与梁长之比)的变化,梁平衡解可能发生三种分岔现象。文中给出了平衡解的分岔形态,并发现了梁分岔解的单向跳跃现象,即突变现象。  相似文献   

6.
A nonlinear dynamic model of a simple non-holonomic system comprising a self-rotating cantilever beam subjected to a unilateral locked or unlocked constraint is established by employing the general Hamilton's Variational Principle. The critical values, at which the trivial equilibrium loses its stability or the unilateral constraint is activated or a saddle-node bifurcation occurs, and the equilibria are investigated by approximately analytical and numerical methods. The results indicate that both the buckled equilibria and the bifurcation mode of the beam are different depending on whether the distance of the clearance of unilateral constraint equals zero or not and whether the unilateral constraint is locked or not. The unidirectional snap-through phenomenon (i.e. catastrophe phenomenon) is destined to occur in the system no matter whether the constraint is lockable or not. The saddle-node bifurcation can occur only on the condition that the unilateral constraint is lockable and its clearance is non-zero. The results obtained by two methods are consistent. The project supported by the National Natural Science Foundation of China (10272002) and the Doctoral Program from the Ministry of Education of China (20020001032) The English text was polished by Yunming Chen.  相似文献   

7.
In this paper, a Fourier expansion-based differential quadrature (FDQ) method is developed to analyze numerically the transverse nonlinear vibrations of an axially accelerating viscoelastic beam. The partial differential nonlinear governing equation is discretized in space region and in time domain using FDQ and Runge–Kutta–Fehlberg methods, respectively. The accuracy of the proposed method is represented by two numerical examples. The nonlinear dynamical behaviors, such as the bifurcations and chaotic motions of the axially accelerating viscoelastic beam, are investigated using the bifurcation diagrams, Lyapunov exponents, Poincare maps, and three-dimensional phase portraits. The bifurcation diagrams for the in-plane responses to the mean axial velocity, the amplitude of velocity fluctuation, and the frequency of velocity fluctuation are, respectively, presented when other parameters are fixed. The Lyapunov exponents are calculated to further identify the existence of the periodic and chaotic motions in the transverse nonlinear vibrations of the axially accelerating viscoelastic beam. The conclusion is drawn from numerical simulation results that the FDQ method is a simple and efficient method for the analysis of the nonlinear dynamics of the axially accelerating viscoelastic beam.  相似文献   

8.
This paper presents recent experimental results on the switching of a simply supported buckled beam. Moreover, the present work is focussed on the experimental validation of a switching mechanism of a bistable beam presented in details in Camescasse et al. (2013). An actuating force is applied perpendicularly to the beam axis. Particular attention is paid to the influence of the force position on the beam on the switching scenario. The experimental set-up is described and special care is devoted to the procedure of experimental tests highlighting the main difficulties and how these difficulties have been overcome. Two situations are examined: (i) a beam subject to mid-span actuation and (ii) off-center actuation. The bistable beam responses to the loading are experimentally determined for the buckling force and actuating force as a function of the vertical position of the applied force (displacement control). A series of photos demonstrates the scenarios for both situations and the bifurcation between buckling modes are clearly shown, as well. The influence of the application point of the force on the bifurcation force is experimentally studied which leads to a minimum for the bifurcation actuating force. All the results extracted from experimental tests are compared to those coming from the modeling investigation presented in a previous work (Camescasse et al., 2013) which ascertains the proposed model for a bistable beam.  相似文献   

9.
The stability and local bifurcation of a simply-supported flexible beam(Bernoulli- Euler type)carrying a moving mass and subjected to harmonic axial excitation are investigated. In the theoretical analysis,the partial differential equation of motion with the fifth-order nonlinear term is solved using the method of multiple scales(a perturbation technique).The stability and local bifurcation of the beam are analyzed for 1/2 sub harmonic resonance.The results show that some of the parameters,especially the velocity of moving mass and external excitation,affect the local bifurcation significantly.Therefore,these parameters play important roles in the system stability.  相似文献   

10.
Based on the assumption of finite deformation, the Hamilton variational principle is extended to a nonlinear elastic Euler-type beam-column structure located on a nonlinear elastic foundation. The corresponding three-dimensional (3D) mathematical model for anaiyzing the nonlinear mechanical behaviors of structures is established, in which the effects of the rotation inertia and the nonlinearity of material and geometry are considered. As an application, the nonlinear stability and the post-buckling for a linear elastic beam with the equal cross-section located on an elastic foundation are analyzed.One end of the beam is fully fixed, and the other end is partially fixed and subjected to an axial force. A new numerical technique is proposed to calculate the trivial solution,bifurcation points, and bifurcation solutions by the shooting method and the Newton-Raphson iterative method. The first and second bifurcation points and the corresponding bifurcation solutions are calculated successfully. The effects of the foundation resistances and the inertia moments on the bifurcation points are considered.  相似文献   

11.
In this paper, we investigate theoretically and experimentally dynamics of a buckled beam under high-frequency excitation. It is theoretically predicted from linear analysis that the high-frequency excitation shifts the pitchfork bifurcation point and increases the buckling force. The shifting amount increases as the excitation amplitude or frequency increases. Namely, under the compressive force exceeding the buckling one, high-frequency excitation can stabilize the beam to the straight position. Some experiments are performed to investigate effects of the high-frequency excitation on the buckled beam. The dependency of the buckling force on the amounts of excitation amplitude and frequency is compared with theoretical results. The transient state is observed in which the beam is recovered from the buckled position to the straight position due to the excitation. Furthermore, the bifurcation diagrams are measured in the cases with and without high-frequency excitation. It is experimentally clarified that the high-frequency excitation changes the nonlinear property of the bifurcation from supercritical pitchfork bifurcation to subcritical pitchfork bifurcation and then the stable steady state of the beam exhibits hysteresis as the compressive force is reversed. This work was partially supported by the Japanese Ministry of Education, Culture, Sports, Science, and Technology, under Grants-in-Aid for Scientific Research 16560377.  相似文献   

12.
The nonlinear behavior of a cantilevered fluid conveying pipe subjected to principal parametric and internal resonances is investigated in this paper. The flow velocity is divided into constant and sinusoidai parts. The velocity value of the constant part is so adjusted such that the system exhibits 3:1 internal resonances for the first two modes. The method of multiple scales is employed to obtain the response of the system and a set of four first-order nonlinear ordinary-differential equations for governing the amplitude of the response. The eigenvalues of the Jacobian matrix are used to assess the stability of the equilibrium solutions with varying parameters. The codimension 2 derived from the double-zero eigenvaiues is analyzed in detail. The results show that the response amplitude may undergo saddle-node, pitchfork, Hopf, homoclinic loop and period-doubling bifurcations depending on the frequency and amplitude of the sinusoidal flow. When the frequency of the sinusoidal flow equals exactly half of the first-mode frequency, the system has a route to chaos by period-doubling bifurcation and then returns to a periodic motion as the amplitude of the sinusoidal flow increases.  相似文献   

13.
For a beam subjected to electromagnetic force, magnetoelastic buckling due to the increase of such force is theoretically investigated by taking account of the nonlinearity of the electromagnetic force and the elastic force of the beam. Using Liapunov-Schmidt method and center manifold theory, the equilibrium space, the bifurcation set and the bifurcation diagram are theoretically derived. Also, the effect of the higher modes other than the buckling mode on the mode shape of the postbuckling state is discussed. Furthermore, a control method to stabilize the magnetoelastic buckling is proposed, and the unstable equilibrium state of the beam in the postbuckling state, i.e., the straight position of the beam, is stabilized by controlling the perturbation of the bifurcation.  相似文献   

14.
In this work, bifurcation control using a piezoelectric actuator isimplemented to stabilize the parametric resonance induced in acantilever beam. The piezoelectric actuator is attached to the surfaceof the beam to produce a bending moment in the beam. The dimensionlessequation of motion for the beam with the piezoelectric actuator on itssurface is derived and the modulation equations for the complexamplitude of an approximate solution are obtained using the method ofmultiple scales. We then acquire the bifurcation set that expresses theboundary of the stable and unstable regions. The bifurcation set ischaracterized by the modulation equations. Next, we determine the orderof feedback gains to modify these modulation equations. By actuating thepiezoelectric actuator under the appropriate feedback, bifurcationcontrol is carried out resulting in the shift of the bifurcation set andthe expansion of the stable region. The main characteristic of thestabilization method introduced above is that the work done by thepiezoelectric actuator is zero in the state where the parametricresonance is stabilized. Thus zero power control is realized in such astate. Experimental results show the validity of the proposedstabilization method for the parametric resonance induced in thecantilever beam.  相似文献   

15.
This paper investigates the steady-state periodic response and the chaos and bifurcation of an axially accelerating viscoelastic Timoshenko beam. For the first time, the nonlinear dynamic behaviors in the transverse parametric vibration of an axially moving Timoshenko beam are studied. The axial speed of the system is assumed as a harmonic variation over a constant mean speed. The transverse motion of the beam is governed by nonlinear integro-partial-differential equations, including the finite axial support rigidity and the longitudinally varying tension due to the axial acceleration. The Galerkin truncation is applied to discretize the governing equations into a set of nonlinear ordinary differential equations. Based on the solutions obtained by the fourth-order Runge–Kutta algorithm, the stable steady-state periodic response is examined. Besides, the bifurcation diagrams of different bifurcation parameters are presented in the subcritical and supercritical regime. Furthermore, the nonlinear dynamical behaviors are identified in the forms of time histories, phase portraits, Poincaré maps, amplitude spectra, and sensitivity to initial conditions. Moreover, numerical examples reveal the effects of various terms Galerkin truncation on the amplitude–frequency responses, as well as bifurcation diagrams.  相似文献   

16.
The bifurcation and chaos of a cable–beam coupled system under simultaneous internal and external resonances are investigated. The combined effects of the nonlinear term due to the cable’s geometric and coupled behavior between the modes of the beam and the cable are considered. The nonlinear partial-differential equations are derived by the Hamiltonian principle. The Galerkin method is applied to truncate the governing equation into a set of ordinary differential equations. The bifurcation diagrams in three separate loading cases, namely, excitation acting on the cable, on the beam and simultaneously on the beam and cable, are analyzed with changing forcing amplitude. Based on careful numerical simulations, bifurcations and possible chaotic motions are represented to reveal the combined effects of nonlinearities on the dynamics of the beam and the cable when they act as an overall structure.  相似文献   

17.
Freire  E.  Pizarro  L.  Rodríguez-Luis  A. J. 《Nonlinear dynamics》2000,23(4):353-375
In this paper we develop numerical algorithms for thecontinuation of degenerate homoclinic orbits to non-hyperbolicequilibria in planar systems. The first situation corresponds to asaddle-node equilibrium (a zero eigenvalue) and the second one is theso-called cuspidal loop (double-zero eigenvalue). The methods proposedmay deal with codimension-two and -three homoclinic connections.Application of the algorithms to several examples supports its validityand demonstrates its usefulness.  相似文献   

18.
Based on an elastic beam model, the instability of multiwalled carbon nanotubes (MWCNTs) induced by the moving fluid inside is investigated. At critical flow velocities, the MWCNTs become unstable and undergo pitchfork bifurcation and subsequently Hopf bifurcation. These critical velocities are found to increase very quickly with respect to decreasing inner radius and are inversely proportional to the length-to-outer-radius ratio. The effect of the van der Waals (vdW) interaction between tubes is investigated and it is found that the vdW interaction can enhance the stability of MWCNTs in general, but the vdW interaction reduces the stability capacity of MWCNTs with very small inner radius.  相似文献   

19.
斜梁在热状态下非线性振动分岔   总被引:5,自引:1,他引:4  
利用Galerkin原理及Melnikov函数法研究了斜梁在热状态下的非线性振动分岔,并讨论分析了温度、长高比、倾斜角对斜梁发生混沌运动区域的影响.  相似文献   

20.
斜梁在热状态下非线性振动分岔   总被引:6,自引:1,他引:5  
吴晓  李敏 《力学与实践》1999,21(6):47-49
利用Galerkin原理及Melnikov函数法研究了斜梁在热状态下的非线性振动分岔,并讨论分析了温度、长高比、倾斜角对斜梁发生混沌运动区域的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号