首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Journal of Thermal Analysis and Calorimetry - A simple method for determination of binding isotherm in the protein-ligand interaction was introduced using isothermal titration calorimetric data....  相似文献   

3.
4.
5.
ITC reveals the increasingly importance of entropy for heavier lanthanides binding to nucleotides. The phosphate group forming chelating effect with purine bases but not with pyrimidines.  相似文献   

6.
7.
Studies of the thermodynamic properties of micellization, as well as the enthalpy change of adsorption (displacement), were conducted using isothermal titration calorimetry (ITC). The cationic surfactants, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, and hexadecyltrimethylammonium bromide or cetyltrimethylammonium bromide were used. Adsorption studies were performed utilizing HiSil 233 precipitated silica as the substrate. The thermodynamics of micellization were studied at 28, 30, and 35 degrees C using ITC. DeltaHdil was calculated and graphed versus concentration in order to determine DeltaHmic and critical micelle concentration. From these data, DeltaGmic and DeltaSmic were also determined and found to be in agreement with values previously determined using traditional temperature-variation methods. The thermodynamics of adsorption were also determined at the above temperatures using ITC. Using the results, the heat of displacement, Qdisp, and enthalpy of displacement, DeltaHdisp, were calculated. A plot of DeltaHdisp as a function of concentration was generated and used to interpret the mechanism of adsorption in the four regions of a typical cationic surfactant adsorption isotherm.  相似文献   

8.
9.
The complex of cholera toxin and ganglioside GM1 is one of the highest affinity protein-carbohydrate interactions known. Herein, the GM1 pentasaccharide is dissected into smaller fragments to determine the contribution of each of the key monosaccharide residues to the overall binding affinity. Displacement isothermal titration calorimetry (ITC) has allowed the measurement of all of the key thermodynamic parameters for even the lowest affinity fragment ligands. Analysis of the standard free energy changes using Jencks' concept of intrinsic free energies reveals that the terminal galactose and sialic acid residues contribute 54% and 44% of the intrinsic binding energy, respectively, despite the latter ligand having little appreciable affinity for the toxin. This analysis also provides an estimate of 25.8 kJ mol(-1) for the loss of independent translational and rotational degrees of freedom on complexation and presents evidence for an alternative binding mode for ganglioside GM2. The high affinity and selectivity of the GM1-cholera toxin interaction originates principally from the conformational preorganization of the branched pentasaccharide rather than through the effect of cooperativity, which is also reinvestigated by ITC.  相似文献   

10.
Thermodynamics of biomacromolecule ligand interaction is very important to understand the structure function relationship in proteins. One of the most powerful techniques useful to obtain additional information about the structure of proteins in biophysical chemistry field is isothermal titration calorimetry (ITC). An ITC experiment is a titration of a biomacromolecule solution by a solution containing a reactant (ligand) at constant temperature to obtain the exchanged heat of the reaction. The total concentration of ligand is the independent variable under experimental control. There are many reports on data analysis for ITC to find the number of binding sites (g), the equilibrium constant (K), the Gibbs free energy of binding process (ΔG), the enthalpy of binding (ΔH) and the entropy of binding (ΔS). Moreover, ITC gives information about the type of reaction, electrostatic and hydrophobic interactions, including determination of cooperativity characterization in binding process by calculating the Hill coefficient (n). A double reciprocal plot and a graphical fitting method are two simple methods used in the enzyme inhibition and metal binding to a protein. Determination of a binding isotherm needs more ITC experiments and more complex data analysis. Protein denaturation by ligand includes two processes of binding and denaturation so that ITC data analysis are more complex. However, the enthalpy of denaturation process obtained by ITC help to understand the fine structure of a protein.  相似文献   

11.
Heat divided by ligand concentration vs. heat, similar to the Scatchard plot, was introduced to obtain the equilibrium constant (K) and the enthalpy of binding (DH) using isothermal titration calorimetry data. Values of K and DH obtained by this linear pseudo-Scatchard plot for a system with a set of independent binding sites (such as binding fluoride ions on urease and monosaccharide methyl a-D-mannopyranoside on concavalin A) were remarkably like that obtained from a normal fitting Wiseman method and other our technical methods. On applying this graphical method to study the binding of copper ion on myelin basic protein (MBP), a concave downward curve obtained was consistent with the positive cooperativity in the binding. A graphical fitting by simple method for determination of thermodynamic parameters was also introduced. This method is general, without any assumption and restriction made in previous method. This general method was applied to the product inhibition study of adenosine deaminase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The interaction of the antimicrobial peptide dicynthaurin (ala) monomer with model membranes of zwitterionic and negatively charged lipids and mixtures thereof was studied by means of isothermal titration calorimetry (ITC), fluorescent leakage, and dynamic light scattering (DLS) measurements. For the ITC analysis, we have applied the surface partitioning equilibrium model which shows that the interaction is predominately driven by hydrophobic effects (Kb between 2 x 10(4) and 1 x 10(5) M(-1)). Under low salt conditions, the enhanced electrostatic interaction leads to larger peptide concentrations immediately above the vesicle surface, which initiates the insertion of the peptide into the bilayer more effectively. Fluorescent leakage measurements have shown a fast leakage of the fluorescent dye within seconds after peptide addition. The analysis of the leakage kinetics was performed in terms of an initial pore formation model (up to t = 1000 s) that takes the reversible surface aggregation of bound peptide monomers into account. From this analysis, a minimum aggregation number of n = 7 +/- 2 per pore is obtained.  相似文献   

13.
The current efficiency for the electrogeneration of chromium(II) for use as a coulometric titrant was studied for several supporting electrolytes. With a mercury cathode and a 0.1 M chromic sulfate-0.1 M potassium chloride medium, 0.8 to 2.8 mg of copper (II) in 110 ml of solution can be titrated using potentiometric end-point detection.  相似文献   

14.
We establish high-sensitivity isothermal titration calorimetry (ITC) as a fast, reliable, and versatile tool for assessing membrane translocation of charged compounds. A combination of ITC uptake and release titrations can discriminate between the two extreme cases of half-sided binding and complete transbilayer equilibration on the experimental time scale. To this end, we derive a general fit function for both assays that allows for incorporation of different membrane partitioning models. Electrostatic effects are taken into account with the aid of Gouy-Chapman theory, thus rendering uptake and release experiments amenable to the investigation of charged solutes. This is exemplified for the flip-flop of the anionic detergent sodium dodecyl sulfate (SDS) across the membranes of 100-nm-diameter unilamellar vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in aqueous solution (10 mM phosphate buffer, 154 mM NaCl, pH 7.4). If repulsive electrostatic forces are accounted for adequately, SDS binding to POPC membranes can be evaluated on the basis of ideal mixing in all phases. At 25 degrees C, the intrinsic partition coefficient between the interfacial aqueous phase and the membrane amounts to 3.5 x 10(6); however, detergent flip-flop is negligibly slow under these conditions. Raising the temperature to 65 degrees C lowers the intrinsic partition coefficient to 1.4 x 10(6) but enables rapid transbilayer distribution of the detergent and, therefore, binding to or desorption from both membrane leaflets. Thus, combining a surface partition equilibrium with simple electrostatic theory appears highly useful in monitoring transmembrane movement of ionic compounds by ITC, thereby eliminating the need for specific reporter groups.  相似文献   

15.
The curing kinetics of nanocomposites based on phenolic resol cured with triethylamine (TEA) containing different amounts of organic montmorillonite was analyzed by differential scanning calorimetry. Kissinger-Akahira-Sunose (KAS) model-free kinetics has been applied to correlate the dynamic cure behaviour in the presence of modified montmorillonite. The effect in the curing of the use of different clay modifiers has also been studied. A commercial clay with hydroxyl groups (Cloisite 30B) and a customized montmorillonite (PheMMT) whose reactive groups induce condensation reactions with the resol matrix have been used. Strong dependency of activation energy on apparent conversion has been observed for all compounds.  相似文献   

16.
Determination of the albumin content of blood surum by amperometric titration with copper(lI) in ammoniacal buffer of pH 9 2 yields values in essential Agreement with, but in general somewhat lower than, those obtained by precipitation in 28% sodium sulfite solution. While the amperometric titration method gives reproducible results of the right order of magnitude, comparison of results with a large number of electrophoretically analyzed samples would be desirable.  相似文献   

17.
Isothermal titration calorimetry (ITC) was used to detect phytate binding to the protein lysozyme. This binding interaction was driven by electrostatic interaction between the positively charged protein and negatively charged phytate. When two phytate molecules bind to the protein, the charge on the protein is neutralised and no further binding occurs. The stoichiometry of binding provided evidence of phytate–lysozyme complex formation that was temperature dependent, being most extensive at lower temperatures. The initial stage of phytate binding to lysozyme was less exothermic than later injections and had a stoichiometry of 0.5 at 313 K, which was interpreted as phytate crosslinking two lysozyme molecules with corresponding water displacement. ITC could make a valuable in vitro assay to understanding binding interactions and complex formation that normally occur in the stomach of monogastric animals and the relevance of drinking water temperature on the extent of phytate–protein interaction. Interpretation of ITC data in terms of cooperativity is also discussed.  相似文献   

18.
19.
Basheer C  Lee HK 《Electrophoresis》2007,28(19):3520-3525
A facile, sensitive, and selective method was developed for the simultaneous separation and determination of copper(I) [Cu(+)] and copper(II) [Cu(2+)] ions using CE with direct UV detection. The copper ions were complexed with a 1.5 mM bicinchoninic acid disodium salt solution at pH 8.7 prior to analysis. Acetate buffer (2 mM) was used as the CE running buffer. Parameters affecting CE separation such as sample pH, applied voltage, concentration of complexing agent, nature of the buffer solution, and interferences by other metal ions, were evaluated. The LODs for Cu(+) and Cu(2+) were 3.0 and 2.5 microg/mL (S/N = 3), respectively. The developed method allows the simultaneous determination of Cu(+) and Cu(2+) in less than 5 min with RSDs of between 5.3 and 9.5% for migration time and between 3.4 and 9.7% for peak areas, respectively. At optimum conditions, the percentage recoveries of Cu(+) and Cu(2+) were found to be 99.4 and 99.5%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号