首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
The active control of sound transmission through a rectangular panel is experimentally verified. The control system is based on a collocated volume velocity sensor/actuator pair which measures and excites the first radiation mode of the panel. Suppression of the first radiation mode is an efficient strategy to control the low frequency sound radiation from the panel. This configuration leads to a simple single-input single-output control system, to which feedback control can be applied.Two implementations of the volume velocity sensor/actuator pair are tested. First, a polyvinyledene fluoride polymer (PVDF) volume velocity actuator foil with shaped electrodes is used in combination with an identical PVDF volume velocity sensor foil. Due to the mechanical coupling between the PVDF sensor and actuator foil, it is shown that a direct velocity feedback control scheme is not feasible because higher order structural modes will be destabilized. Instead integral force feedback is applied, such that the open-loop transfer function has a roll-off towards higher frequencies. Experiments show that this control strategy results in a reduction of the sound pressure in the receiving room of 10 dB at the first structural resonance without spillover to higher order modes. Due to the roll-off towards high frequencies, the control over higher order modes remains limited. Second, a discrete volume velocity sensor is constructed by summing the signals from 12 point sensors placed on the panel. The volume velocity actuator consists of two PVDF foils, glued on each side of the panel and driven in opposite phase. Direct volume velocity feedback is applied to this system, which is minimum phase. This control system is capable of reducing the sound pressure in the receiving room below 300 Hz by 10-15 dB without spillover to higher order modes.  相似文献   

2.
A torque actuator and a distributed piezoelectric polymer (PVDF) actuator are utilized for control of a rotating cantilever flexible beam. The torque control contains proportional and derivative (PD) feedback for rigid motion control and a PVDF actuator control for vibration damping. Unlike previous approaches in the literature in which the angular velocity feedback was utilized, in this study we propose to use the linear velocity feedback (L-type) in our controller design for feasible implementation and avoiding modal truncation. The stability of the system with the L-type control has been analyzed, using the concept of a virtual joint model. The advantage of the proposed scheme lies in easy implementation, avoidance of modal truncation, efficient suppression of the dominant mode of vibration, and allowing high-speed motions. Numerical examples demonstrate the effectiveness of the proposed approach.  相似文献   

3.
A locally synthesized controller (LSC) is one that uses a local feedback signal in a noise or vibration field (VF) to synthesize the actuation signal. The global damping of a VF by available LSCs requires sensor-actuator collocation. This study presents a LSC for the global damping of a VF without requiring sensor-actuator collocation, which is important to noise control applications where a sensor may be placed away from an actuator to avoid the near field effects. It is proven that the LSC damps the entire VF instead of just a local feedback loop. This is different from other LSCs that may control local feedback loops without damping the VFs. A decentralized control law is presented here to extend the LSC to a decentralized damping system using multiple actuators.  相似文献   

4.
In this study, the active vibration control of clamped–clamped beams using the acceleration feedback (AF) controller with a sensor/moment pair actuator configuration is investigated. The sensor/moment pair actuator is a non-collocated configuration, and it is the main source of instability in the direct velocity feedback control system. First, the AF controller with non-collocated sensor/moment pair actuator is numerically implemented for a clamped–clamped beam. Then, to characterize and solve the instability problem of the AF controller, a parametric study is conducted. The design parameters (gain and damping ratio) are found to have significant effects on the stability and performance of the AF controller. Next, based on the characteristics of AF controllers, a multimode controllable single-input single-output (SISO) AF controller is considered. Three AF controllers are connected in parallel with the SISO architecture. Each controller is tuned to a different mode (in this case, the second, third and fourth modes). The design parameters are determined on the basis of the parametric study. The multimode AF controller with the selected design parameters has good stability and a high gain margin. Moreover, it reduces the vibration significantly. The vibration levels at the tuned modes are reduced by about 12 dB. Finally, the performance of the AF controller is verified by conducting an experiment. The vibration level of each controlled mode can be reduced by about 12 dB and this value is almost same as the theoretical result.  相似文献   

5.
Finite element modelling of laminated structures with distributed piezoelectric sensor and actuator layers and control electronics is considered in this paper. Beam, plate and shell type elements have been developed incorporating the stiffness, mass and electromechanical coupling effects of the piezoelectric laminates. The effects of temperature on the electrical and mechanical properties and the coupling between them are also taken into consideration in the finite element formulation. The piezoelectric beam element is based on Timoshenko beam theory. The plate/shell element is a nine-noded field-consistent element based on first order shear deformation theory. Constant-gain negative velocity feedback, Lyapunov feedback as well as a linear quadratic regulator (LQR) approach have been used for active vibration control with the structures subjected to impact, harmonic and random excitations. The influence of the pyroelectric effects on the vibration control performance is also investigated. The LQR approach is found to be more effective in vibration control with lesser peak voltages applied in the piezo actuator layers as in this case the control gains are obtained by minimizing a performance index. The application of these elements in high-performance, light-weight structural systems is highlighted.  相似文献   

6.
Control units comprising a proof-mass electrodynamic actuator and accelerometer-sensor pair with a time integrator and fixed gain controller are an effective way to implement velocity feedback control on thin flexible structures. These control units produce active damping provided the fundamental resonance frequency of the actuators is well below that of the structure under control. Control stability limits arise from the actuators fundamental resonances which introduce a 180° phase lag in the sensor-actuator frequency response functions, thus causing the feedback loops to be only conditionally stable. In contrast to previous studies, this paper discusses the response of a control unit with electrodynamic proof-mass actuator in terms of the open- and closed-loop base impedance that it exerts on the structure. This allows for a straight-forward physical interpretation of both stability and control performance. Experimental and simulation results show that the base impedance can be described as the sum of passive and active frequency response functions, where the active part of the control unit response depends on the actuator electromechanical response and also on the response function of the analogue controller circuit. The results show that the base impedance formulation can be effectively used to investigate new designs of both the actuator and electronic controller in order to optimise the stability and performance properties of the control unit.  相似文献   

7.
Theoretical and experimental work is presented to compare the effect of decentralised velocity feedback control on thin homogeneous and sandwich panels. The decentralised control system consists of five control units, which are composed of a proof-mass electrodynamic actuator with an accelerometer underneath its footprint and an analogue controller. The stability of the feedback loops is analysed by considering the sensor-actuator open-loop frequency response function of each control unit and the eigenvalues of the fully populated matrix of open-loop frequency response functions between the five sensors and five actuators. The control performance is then analysed in terms of the time-averaged total kinetic energy and total sound power radiated by the two panels. The results show that for a stiff sandwich panel higher stable feedback gains can be implemented than on a thin homogeneous panel of comparable weight per unit area. Moreover the implementation of decentralised velocity feedback can offset some of the undesirable sound transmission properties of lightweight sandwich structures by efficiently reducing structural vibration and sound power radiation in the mid audio frequency range.  相似文献   

8.
The vibration of a structure can be controlled using either a passive tuned mass damper or using an active vibration control system. In this paper, the design of a multifunctional system is discussed, which uses an inertial actuator as both a tuned mass damper and as an element in a velocity feedback control loop. The natural frequency of the actuator would normally need to be well below that of the structure under control to give a stable velocity feedback controller, whereas it needs to be close to the natural frequency of a dominant structural resonance to act as an effective tuned mass damper. A compensator is used in the feedback controller here to allow stable feedback operation even when the actuator natural frequency is close to that of a structural mode. A practical example of such a compensator is described for a small inertial actuator, which is then used to actively control the vibrations both on a panel and on a beam. The influence of the actuator as a passive tuned mass damper can be clearly seen before the feedback loop is closed, and broadband damping is then additionally achieved by closing the velocity feedback loop.  相似文献   

9.
Optimal control of a thin-walled rotating beam is considered using a higher-order shear deformation theory (HSDT). The beam is pretwisted, doubly tapered, and carries a tip rotor. It comprises an orthotropic host with surface-embedded transversely isotropic piezoelectric sensor-actuator pairs. Spanwise and thicknesswise variation of the electric field applied to actuators is considered. This yields a coupled electro-mechanical system, wherein all displacement variables are coupled via the electric field. Hence, coupling between bending-transverse shear and extension-twist occurs even when the ply angle configuration has circumferentially uniform stiffness. Optimal LQR control with state feedback is used to obtain the control input, i.e., charge density (hence voltage) applied to actuators. Parametric studies involving ply-angle, rotation speeds of beam and rotor, pretwist, taper, rotor mass, and saturation constraint on actuator voltage, are performed. The HSDT yields lowest coupled natural frequencies (as compared to unshearable and first-order shear models) thus providing conservative data, useful for passive and active control designs. The present plant model, with spanwise varying electric field, yields an order-of-magnitude reduction in settling time and control voltage, and lower response, vis-a-vis the decoupled approach.  相似文献   

10.
In this paper the out-of-plane dynamic stability of inclined cables subjected to in-plane vertical support excitation is investigated. We compute stability boundaries for the out-of-plane modes using rescaling and averaging methods. Our study focuses on the 2:1 internal resonance phenomenon between modes that occurs when the excitation frequency is twice the first out-of-plane natural frequency of the cable. The second in-plane mode is excited directly, while the out-of-plane modes can be excited parametrically. An analytical model is developed in order to study the stability regions in parameter space. In this model we include nonlinear coupling effects with other modes, which have thus far been omitted from previous models of parametric excitation of inclined cables. Our study reflects the importance of such effects. Unstable parameter regions are defined for the selected cable configuration. The validity of the proposed stability model was tested experimentally using a small-scale cable actuator rig. A comparison between experimental and analytical results is presented in which very good agreement with model predictions was obtained.  相似文献   

11.
This paper presents a theoretical study of active vibration isolation on a two degree of freedom system. The system consists of two lumped masses connected by a coupling spring. Both masses are also attached to a firm reference base by a mounting spring. The lower mass is excited by a point force. A reactive control force actuator is used between the two masses in parallel with the coupling spring. Both masses are equipped with an absolute velocity sensor. The two sensors and the actuator are used to implement velocity feedback control loops to actively isolate the upper mass from the vibrations of the lower mass over a broad range of frequencies. The primary concern of the study is to determine what type of velocity feedback configuration is suitable with respect to the five parameters that characterise the system (the three spring stiffnesses and the two masses). It is shown analytically that if the ratio of the lower mounting spring stiffness to the lower mass is larger than the ratio of the upper mounting spring stiffness to the upper mass (supercritical system), feeding back the absolute upper mass velocity to the reactive force actuator results in an unconditionally stable feedback loop and the vibration isolation objective can be fully achieved without an overshot at higher frequencies. In contrast, if the ratio of the lower mounting spring stiffness to the lower mass is smaller than the ratio of the upper mounting spring stiffness to the upper mass (subcritical system), the upper mass velocity feedback is conditionally stable and the vibration isolation objective cannot be accomplished in a broad frequency band. For subcritical systems a blended velocity feedback is proposed to stabilise the loop and to improve the broad-band vibration isolation effect. A simple inequality is introduced to derive the combinations between the two error velocities that guarantee unconditionally stable feedback loops.  相似文献   

12.
Using finite element techniques to optimize the spatial gain distribution of PVDF film, we developed a modal transducer for specific modes to perform real-time vibration control of integrated smart structures. This method makes it possible to design the modal transducer for two-dimensional structure with arbitrary geometry and boundary conditions. As a practical means for implementation, the gain distribution was approximated by optimizing electrode patterns, lamination angles, and relative poling directions of the multi-layered PVDF transducer. This corresponds to the approximation of a continuous function using discrete values. A genetic algorithm was used in the optimization of the electrode pattern and lamination angle of each PVDF layer. For this purpose, the continuous value of the lamination angle was encoded into discrete values using binary 5-bit strings. Validity of the proposed concept was demonstrated experimentally. A modal sensor for the first and second modes of cantilevered composite plate was designed using two layers of PVDF films. The experimental results show that spillover signals by residual modes were successfully reduced using the optimized multi-layered PVDF sensor. The actuator was designed also using two layers of PVDF films to minimize the system energy in the control modes. Real-time vibration control system was successfully realized using the optimized sensor, actuator, and a discrete LQG controller. Closed-loop test showed that modal peaks of the first and second modes were reduced by amounts of 13 and 4 dB respectively.  相似文献   

13.
When multiple actuators and sensors are used to control the vibration of a panel, or its sound radiation, they are usually positioned so that they couple into specific modes and are all connected together with a centralized control system. This paper investigates the physical effects of having a regular array of actuator and sensor pairs that are connected only by local feedback loops. An array of 4 x 4 force actuators and velocity sensors is first simulated, for which such a decentralized controller can be shown to be unconditionally stable. Significant reductions in both the kinetic energy of the panel and in its radiated sound power can be obtained for an optimal value of feedback gain, although higher values of feedback gain can induce extra resonances in the system and degrade the performance. A more practical transducer pair, consisting of a piezoelectric actuator and velocity sensor, is also investigated and the simulations suggest that a decentralized controller with this arrangement is also stable over a wide range of feedback gains. The resulting reductions in kinetic energy and sound power are not as great as with the force actuators, due to the extra resonances being more prominent and at lower frequencies, but are still worthwhile. This suggests that an array of independent modular systems, each of which included an actuator, a sensor, and a local feedback control loop, could be a simple and robust method of controlling broadband sound transmission when integrated into a panel.  相似文献   

14.
低频振动的控制是评估汽车舒适性的重要指标。针对汽车板件结构的低频振动控制问题,提出了一种基于局域共振机理的新型准二维声子晶体板。其结构由单侧复合圆柱共振单元周期排布在基板上构成。通过有限元方法得到了该结构的带隙特性,并结合其振型和传输谱分析了低频完全带隙的形成机理。研究表明,不同形式的板振动模式与圆柱共振单元的局域共振模式相互耦合形成面内带隙与面外带隙,两者叠加形成完全带隙。进一步研究发现,通过改变结构的材料和尺寸参数可以将共振带隙调节到满足实际应用要求的极低频范围,可在低于100 Hz的频段形成完全带隙,并可在更宽的频带内抑制z方向振动的弯曲波,为声子晶体在车身板件减振中的实际应用提供了依据。  相似文献   

15.
In this study the active vibration control of a structure modelled as a single degree of freedom system and excited by a white noise force is considered. The control system consists of an inertial actuator driven with a signal proportional to the velocity of the structure under control measured by an ideal collocated sensor. The optimisation of the physical and control parameters of the control system such as the internal damping of the actuator, its natural frequency and the feedback gain of the controller are considered such that either the kinetic energy of the host structure is minimised or the power dissipated by the control system is maximised. This type of control system is only conditionally stable therefore a stability condition has to be satisfied by the optimisation process. The paper shows that the two optimisation criteria are equivalent.  相似文献   

16.
This paper examines squeal and chatter phenomena generated experimentally in mountain bike disc brakes. There are two kinds of frictional self-excited vibrations in the bike disc brakes, called squeal with frequency of 1 kHz and chatter with frequency of 500 Hz. In order to reproduce the squeal and chatter, a bench test apparatus using an actual bike was set up to determine the associated frequency characteristics experimentally. The results show the frequencies to be independent of pad temperature and disc rotating speed. Squeal is shown to be in-plane vibration in the direction of the disc surface which is caused by the frictional characteristics having negative slope with respect to the relative velocity in the vibrating system, which includes brake unit, spokes and hub. Chatter is generated within a limited high temperature region. Again, it is frictional vibration in which the squeal and out-of-plane vibration of the disc due to Coulomb friction combine through the internal resonance relation between in-plane and out-of-plane nonlinear vibration caused by the temperature increase of the disc during braking.  相似文献   

17.
LINEAR VIBRATION CHARACTERISTICS OF CABLE-BUOY SYSTEMS   总被引:1,自引:0,他引:1  
A theoretical model for the linear vibration of a cable tensioned by a subsurface buoy is developed. The equilibrium of the cable-buoy system subject to drag is evaluated using an approximate closed-form solution whose range of validity is confirmed through comparison with numerical solutions. The three-dimensional equations of cable-buoy motion are linearized about this equilibrium and then used to assess vibration characteristics. The characteristic equations for the natural frequencies of both in-plane and out-of-plane vibration modes are derived. The in-plane natural frequency spectrum exhibits the curve veering phenomena due to asymmetry of the associated mode shapes. Parameter studies reveal the dependencies of the in-plane and out-of-plane vibration modes on the cable tension, the buoy mass, and the current velocity.  相似文献   

18.
This paper is focused on the vibration effects produced by an array of decentralised velocity feedback loops that are evenly distributed over a rectangular thin plate to minimise its flexural response. The velocity feedback loops are formed by collocated ideal velocity sensor and point force actuator pairs, which are unconditionally stable and produce ‘sky-hook’ damping on the plate. The study compares how the overall flexural vibration of the plate and the local absorption of vibration power by the feedback loops vary with the control gains. The analysis is carried out both considering a typical frequency-domain formulation based on kinetic energy and structural power physical quantities, which is normally used to study vibration and noise problems, and a time-domain formulation also based on kinetic energy and structural power, which is usually implemented to investigate control problems. The time-domain formulation shows to be much more computationally efficient and robust with reference to truncation errors. Thus it has been used to perform a parametric study to assess if, and under which conditions, the minimum of the kinetic energy and the maximum of the absorbed power cost functions match with reference to: (a) the number of feedback control loops, (b) the structural damping in the plate, (c) the mutual distance of a pair of control loops and (d) the mutual gains implemented in a pair of feedback loops.  相似文献   

19.
This paper presents a study on the design and use of a small scale proof mass electrodynamic actuator, with a low mounting resonance frequency, for velocity feedback control on a thin rectangular panel. A stability-performance formula is derived, which can be effectively used to assess the down scaling effects on the stability and control performance of the feedback loop. The design and tests of a velocity feedback loop with a prototype small scale proof mass actuator are also presented. When a feedback control having a gain margin of about 6 dB is implemented, so that there is little control spillover effect around the fundamental resonance of the actuator, reductions of vibration between 5 dB and 10 dB in the frequency band between 80 Hz and 250 Hz have been measured at the control position.  相似文献   

20.
This paper investigates the transmission loss of symmetric and asymmetric laminate composite panels periodically reinforced by composite stiffeners. A comprehensive model based on periodic structure theory is developed. First order shear deformation theory is used and the coupling of the in-plane motion of the panel with its out-of-plane motion is taken into account. Stiffeners interact with the panel through three forces (two in-plane, one out-of-plane) and a torsion moment. Three types of cross sections are investigated for the composite stiffeners: I-shaped, C-shaped, and omega-shaped cross-sections. The model is validated numerically by comparison with the finite element/boundary element method. Experimental validations are also conducted. In both cases, excellent agreement is obtained. Numerical results show that the in-plane coupling effect is increased by increasing the panel thickness and the stiffener's eccentricity. The in-plane coupling effect is also found to increase with frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号