首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The products of tyrosinase-catalyzed caffeic acid oxidation at pH 6.5 were investigated using high-performance liquid chromatography (HPLC) coupled to electrospray ionization mass spectrometry (ESI-MS). Aliquots of reaction mixtures were withdrawn at different times, varying from 0 to 24 h, and directly analysed by HPLC-ESI-MS and, in the case of 1 and 5 h, by HPLC-ESI-MS/MS to obtain structural information on caffeic acid derivatives. In particular, two different classes of caffeic acid dimers were identified: caffeicins-like structures and dimers originated by CC coupling between the benzene rings. Evidences for the presence of trimeric derivatives of caffeic acid were also obtained from MS data.  相似文献   

2.
Steroidal glycoalkaloids (SGAs) extracted from tomato leaves and berries (Lycopersicon esculentum Mill.) were separated and identified using optimized reversed-phase liquid chromatography with electrospray ionization (ESI) and ion trap mass spectrometry (ITMS). The ESI source polarity and chromatographic conditions were evaluated. The ESI spectra contain valuable information, which includes the mass of SGAs, the mass of the aglycones, and several characteristic fragment ions. Cleavage at the interglycosidic bonds proximal to the aglycones is the most prominent process in the ESI process. A protonated molecule, [M+H]+, accompanied by a mixed adduct ion, [M+H+Na]2+, was observed for alpha-tomatine (i.e., m/z 1034.7 and 528.9) and dehydrotomatine (i.e., m/z 1032.6 and 527.9) in positive ion mode spectra. The structures of these tomato glycoalkaloids were confirmed using tandem mass spectrometry. The identification of a new alpha-tomatine isomer glycoalkaloid, named filotomatine (MW 1033), which shares a common tetrasaccharide structure (i.e., lycotretraose) with alpha-tomatine and dehydrotomatine, and soladulcidine as an aglycone, is described for the first time. It occurs in significant amounts in the extracts of wild tomato foliage. Multistage mass spectrometry both of the protonated molecules and of the doubly charged ions was used for detailed structural elucidation of SGAs. Key fragmentations and regularities in fragmentation pathways are described and the fragmentation mechanisms involved are proposed.  相似文献   

3.
Flavonoids are a class of secondary plant metabolites existing in great variety in nature. Due to this variety, identification can be difficult, especially as overlapping compounds in both chromatographic separations and mass spectrometric detection are common. Methods for distinguishing isobaric flavonoids using MS2 and MS3 have been developed. Chromatographic separation of various plant extracts was done with RP‐HPLC and detected with positive ESI‐MS operated in information‐dependent acquisition (IDA) mode. Two methods for the determination of flavonoid identity and substitution pattern, both featuring IDA criteria, were used together with the HPLC equipment. A third method where the collision energy was ramped utilized direct infusion. With the developed strategies, it is possible to differentiate between many isobaric flavonoids. Various classes of flavonoids were found in all of the plant extracts, in the red onion extract 45 components were detected and for 29 of them the aglycone was characterized, while the substituents were tentatively identified for 31 of them. For the strawberry extract, those numbers were 66, 30 and 60, and for the cherry extract 99, 56 and 71. The great variety of flavonoids, several of them isobaric, found in each of the extracts highlights the need for reliable methods for flavonoid characterization. Methods capable of differentiating between most of the isobars analyzed have been developed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, four types of compounds including coumarins, chromones, furoylmethyl amino acid derivative and benzofuran glycoside were isolated from the roots of Saposhnikovia divaricata. The electrospray ionization (ESI) mass spectral fragmentation pathways of these compounds were proposed. In particular, the ESI-MS(n) fragmentation behavior of linear dihydrofurocoumarins, dihydrofuro- and dihydropyranochromones were deduced in detail. For the linear dihydrofurocoumarins, the fragmentation was triggered by the initial loss of the C-4' substituting group. Then, the characteristic ions were observed followed by the losses of 15, 18, 28 and 46 Da. It is noteworthy that the elimination of H(2)O (18 Da) from the cleavage of the dihydrofuran ring is reported for the first time. For the linear dihydrofurochromones, characteristic eliminations of 18, 48 and 72 Da were observed. The loss of 18 Da could arise from two different fragmentation pathways, and the observed ion was composed of a mixture of two different structural ions. For the linear dihydropyranochromones, it was found that the dihydropyran ring was converted into the pyran ring by the elimination of the C-3' substituting group. This fragmentation was followed by the diagnostic losses of 18, 28, 42 and 54 Da in tandem mass spectrometry. The above fragmentation rules were successfully applied for the analysis of the chemical constituents of the roots of Saposhnikovia divaricata. A total of 32 compounds were identified or tentatively characterized by HPLC/DAD/ESI-MS(n). Among them, eight compounds were new and seven compounds were reported from that genus for the first time.  相似文献   

5.
A novel method for the analysis of endogenous lipids and related compounds was developed employing hydrophilic interaction liquid chromatography with electrospray ionization tandem mass spectrometry. A hydrophilic interaction liquid chromatography with carbamoyl stationary phase achieved clear separation of phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, ceramide, and mono‐hexsosyl ceramide groups with good peak area repeatability (RSD% < 10) and linearity (R2 > 0.99). The established method was applied to human plasma assays and a total of 117 endogenous lipids were successfully detected and reproducibly identified. In addition, we investigated the simultaneous detection of small polar metabolites such as amino and organic acids co‐existing in the same biological samples processed in a single analytical run with lipids. Our results show that hydrophilic interaction liquid chromatography is a useful tool for human plasma lipidome analysis and offers more comprehensive metabolome coverage.  相似文献   

6.
7.
Erigeron breviscapus is an important herbal drug for the treatment of cardiovascular and cerebral vessel diseases. In this study, phenolic compounds were extracted from the whole plant of E. breviscapus and analyzed by high-performance liquid chromatography/electrospray ionization mass spectrometry. A total of 53 compounds were identified or tentatively characterized based on their UV and mass spectra. These compounds included caffeoylquinic acids (CQAs), CQA glucosides, malonyl-CQAs, acetyl-CQAs, caffeoyl-2,7-anhydro-3-deoxy-2-octulopyranosonic acids (CDOAs), caffeoyl-2,7-anhydro-2-octulopyranosonic acids (COAs), flavones, flavonols and flavonones. Most of them were reported for the first time from E. breviscapus and nineteen of them belonged to new compounds. The MS(n) spectra of CQA glucosides were similar to CQAs and they were discriminated by their retention times. No caffeic acid related ions (X(0) (-), Y(0) (-) and Z(0) (-)) were observed in MS(n) spectra of acyl-CQAs compared to those of CQAs. Fragment ions ((2,5)O(-), (3,6)O(-) and (4,6)O(-)) corresponding to ring cleavage were shown in MS(n) spectra of CDOAs and COAs, characteristic of this class of compounds. The 5,6,7-trihydroxyl-substituted flavones were dominant in E. breviscapus. Their [A--H](-) ions underwent the loss of a molecule of H(2)O, followed by the loss of CO, which was used to discriminate from other hydroxyl-substituted flavones. Our results are the first comprehensive analysis of E. breviscapus constituents and will be helpful for the quality control of the herb of E. breviscapus and its related preparations.  相似文献   

8.
Changes in sphingolipids have been associated with profound effects in cell fate and development in both plants and animals. Sphingolipids as a group consist of a large number of different compound classes of which numerous individual species may vary in response to environmental stimuli to affect cellular responses. The ability to measure all sphingolipids simultaneously is, therefore, essential to an understanding of the biochemical regulation of sphingolipid metabolism and signaling molecules derived from it. In the model plant Arabidopsis thaliana, the major sphingolipid classes are glycosylinositolphosphoceramides, glucosylceramides, hydroxyceramides and ceramides. Other minor but potentially important sphingolipids are free long-chain bases and their phosphorylated derivates. By using a single solvent system with reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry detection we have been able to separate and measure 168 sphingolipids from a crude sample. This greatly speeds up and simplifies the analysis of plant sphingolipids and should pave the way for a better understanding of their role in plant performance.  相似文献   

9.
Ageing products of a commercial jet engine oil based on pentaerythritol tetraesters which were formed upon operation in an aviation turbine were detected by electrospray ionization mass spectrometry (ESI-MS) and characterized by LC-ESI-MS. The fatty acid composition of these ageing products was investigated by ESI-MS-MS analysis. The ammonium adducts of the newly formed pentaerythritol tetraester degradation products were found to be suitable parent ions for further structure elucidation work. ESI-MS, LC-ESI-MS and ESI-MS-MS proved to be versatile tools to study the chemical composition (distribution of homologues) as well as the mechanism of ageing of ester based lubricants on a molecular level. Due to its high sensitivity, ESI-MS can also be used to characterize and identify trace levels of ester-based lubricants.  相似文献   

10.
A confirmatory method for the determination of low levels of acrylamide in different food products is presented. The method entails extraction of acrylamide with water, precipitation of matrix constituents with acetonitrile, and two clean-up steps consecutively over Isolute Multimode and cation-exchange cartridges. The final extract is analyzed by liquid chromatography (LC) coupled to positive electrospray ionization tandem mass spectrometry employing [13C3]-acrylamide as internal standard. For the chromatographic step, a LC column based on a polymethacrylate gel is employed which shows good retention of acrylamide under isocratic flow conditions (k' = 1.2). Mass spectral acquisition is done by selected reaction monitoring, choosing the characteristic transitions m/z 72-->55, 72-->54 and 72-->27. In-house validation data for breakfast cereals and crackers show good precision of the method, with intra- and interassay variation below 10%. The limits of detection for crackers and breakfast cereals, respectively are estimated at 15 and 20 microg/kg, and recoveries of fortified samples ranged between 58 and 76%. Furthermore, the method is applicable to a number of different food products, including biscuits, crisp bread, wafers, confectionery cocoa liquor, and nuts. Finally, the good results obtained in several small-scale interlaboratory tests provided additional confidence in the performance of the method.  相似文献   

11.
Analytical techniques for the detection of small amounts of explosives (in the picogram range) are now involved in various application. Some of them concern soil, water and air monitoring in order to face environmental problems related to improper handling procedures either in stocking or in wasting of the explosive products. Other areas are strictly related to forensic analysis of samples coming either from explosion areas where the matrix is various (metal, glass, wood, scraps), or from explosives transportation related to international terrorism. Generally speaking, for these applications the bulk of the matrix seriously interferes in the detection of the explosive analyte, which is usually present at trace levels. Unfortunately, despite some improvements, analytical techniques developed up today in this domain are still faced to two main constraints: the introduction of new products with unanticipated chemico-physical properties and the requirement of a routine and fast analytical method which can handle any matrix with a minimal clean-up and performing a sensitivity compatible either with the ever-decreasing demanded detection limit and with the ever-decreasing available specimen amount. These requirements can be fulfilled now by the new LC-MS and LC-MSMS techniques: mass spectrometry (MS) is likely an universal detector but even specific, especially when implemented in tandem MS (MSMS); LC is by far the most suitable technique to handle such a kind of compounds. Moreover, of a particular concern are some explosives which are reported to be thermally stable but difficult to dissolve. Some of the experiments on characterization of explosives [Octagen (HMX), Ethyleneglycol dinitrate (EGDN), Exogen (RDX), Propanetriol trinitrate (NG), Trinitrotoluene (TNT), N-Methyl-N-tetranitrobenzenamine (TETRYL), Dintrotoluene (DNT), Bis-(nitrooxy-methyl) propanediol dinitrate (PETN), Hexanitrostilbene (HNS), Triazido-trinitrobenzene (TNTAB), Tetranitro-acridone (TENAC), Hexa-nitrodiphenylamine (HEXYL), Nitroguanidine (NQ)] by LC-MS and LC-MSMS with the API-IonSpray source and using the Parent-Scan technique are presented.  相似文献   

12.
High-performance liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometry and photodiode array detection (HPLC-DAD-ESI-MS(n)) was developed to identify and characterize the flavonoids in a Chinese formulated preparation, Longdan Xiegan Decoction (LXD). In total, fifty-one flavonoids (27 flavones, 10 flavanones, 7 chalcones, 5 flavonols and 2 isoflavones) were characterized. Eighteen compounds among them including a newly detected flavonoid, naringin, from the ingredient herbs, were unambiguously determined by comparing the retention times (t(R)), UV spectral data and mass fragmentation behaviors with those of the reference compounds. Another thirty-three compounds were tentatively identified by referencing to the reported data of their UV and MS spectra. The ESI-MS/MS fragmentation behavior of flavones (OMe-substituted, O-glycosides, C-glycosides), chalcones, flavonols and their appropriate characteristic pathways were proposed. In negative ion ESI-MS all the flavonoids yielded prominent [M--H](-) ions in the first order mass spectra. Fragmentation with a loss of mass of 15 Da (CH(3)), 18 Da (H(2)O), 28 Da (CO), 44 Da (CO(2)), 56 Da (2CO) and the residues of glucose and glucuronic acid observed in the MS/MS spectra were useful for aiding the structural identification of the flavonoids investigated.  相似文献   

13.
Electrospray operated in the negative mode was used to analyse methoxylated flavonoids. They were found to produce radical anions by collision-induced fragmentation of the aglycones. Loss of a methyl group from the deprotonated molecule corresponding to [M - H - 15]-* ions, as well as [M - H - 15-28]-* and [M - H - 15-29]- fragment ions, were found to constitute the characteristic fragmentation for the monomethoxylated species, whereas [M - H - 15]-*, [M - H - 30]- and [M - H - 30-28]- were predominant for the polymethoxylated species. Obtained under similar conditions, the product-ion spectra of isomeric compounds were characteristically different. It is therefore possible to distinguish between methoxylated flavonoids with identical molecular mass, e.g. when screening plant extracts for flavonoid composition. However, comparison with standard compounds is necessary for the identification of unknown flavonoid aglycones.  相似文献   

14.
Grape antioxidant dietary fiber (GADF) is a dietary supplement that combines the benefits of both fiber and antioxidants that help prevent cancer and cardiovascular diseases. The antioxidant polyphenolic components in GADF probably help prevent cancer in the digestive tract, where they are bioavailable. Mass spectrometry coupled to liquid chromatography is a powerful tool for the analysis of complex plant derivatives such as GADF. We use a combination of MS techniques, namely liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOF-MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) on a triple quadrupole, for the identification of the polyphenolic constituents of the soluble fraction of GADF. First, we separated the mixture into four fractions which were tested for phenolic constituents using the TOF system in the full scan mode. The high sensitivity and resolution of the TOF detector over the triple quadrupole facilitate the preliminary characterization of the fractions. Then we used LC/ESI-MS/MS to identify the individual phenols through MS/MS experiments (product ion scan, neutral loss scan, precursor ion scan). Finally, most of the identities were unequivocally confirmed by accurate mass measurements on the TOF spectrometer. LC/ESI-TOF-MS combined with MS/MS correctly identifies the bioactive polyphenolic components from the soluble fraction of GADF. High-resolution TOF-MS is particularly useful for identifying the structure of compounds with the same LC/ESI-MS/MS fragmentation patterns.  相似文献   

15.
Liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is one of the most prominent analytical techniques owing to its inherent selectivity and sensitivity. In LC/ESI-MS/MS, chemical derivatization is often used to enhance the detection sensitivity. Derivatization improves the chromatographic separation, and enhances the mass spectrometric ionization efficiency and MS/MS detectability. In this review, an overview of the derivatization reagents which have been applied to LC/ESI-MS/MS is presented, focusing on the applications to low molecular weight compounds.  相似文献   

16.
A reliable and sensitive on-line high-performance liquid chromatography (HPLC) coupled with electrospray quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS/MS) method has been optimized and established for the analysis of polyprenylated xanthones in the plant Garcinia xipshuanbannaensis. Collision induced MS/MS techniques were used to fragment the precursor molecular ions and MS/MS/MS techniques based on cone voltage fragmentation were used to further break down the resulting product ions sequentially. It was found that Retro-Diels-Alder rearrangement occurred from the xanthone skeleton in the MS/MS/MS process and produced characteristic fragment ions, which are useful for differentiating some positional isomers containing the prenyl unit on the A ring or B ring. Complementary fragmentation information, for instance the successive loss of prenyl residues, is also valuable for the identification of this class of xanthones. Under optimized HPLC-MS/MS/MS method, a total of 15 prenylated xanthones could be separated within 10min. This method also provided information about the molecular formula of a precursor molecule and its fragments, which could be used for dereplication of known or likely new prenylated xanthones in Garcinia plants before the purification and structural elucidation process.  相似文献   

17.
Glutathione (GSH) is a tripeptide composed of glutamate, cysteine, and glycine. It is present in practically all cells and has several important roles, such as preventing the oxidation of the sulfhydryl groups of proteins within a cell. Evidence for GSH deficiency or depletion has been found in a variety of diseases and toxicity-related studies, including diabetes and induction of oxidative stress to form reactive oxygen species which cause DNA, lipid, and protein oxidations. A simple, selective, and sensitive analytical method for measuring low levels of GSH in biological fluids would therefore be desirable to conduct GSH deficiency or depletion-related mechanistic toxicity studies. Here a method for both low- and high-level quantitation of GSH from cultured cells and rat liver tissues via liquid chromatography/positive electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) has been developed. The lower limit of quantitation (LOQ) of the method was 5 ng/mL. The method is linear over a wide dynamic concentration range of 5.0 to 5000.0 ng/mL, with a correlation coefficient R2 > 0.99. The intra-day assay precision relative standard deviation (RSD) values for all quality control (QC) samples were < or =16.31%, with accuracy values ranging from 94.13 to 97.80%. The inter-day assay precision RSD values for all QC samples were < or =15.94%, with accuracy values ranging from 94.51 to 100.29%. With this method, low levels of GSH from diethyl maleate (DEM)-treated mouse lymphoma cells, and GSH in rat liver tissues, were quantified.  相似文献   

18.
Phenolic compounds are the major bioactive constituents of Forsythia suspensa, an important Chinese herbal medicine used for the treatment of various infectious diseases. Fragmentation behaviors of the phenolic compounds in F. suspensa were investigated by using a high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS(n)) method. For common phenylethanoid glycosides, the loss of the caffeoyl moiety was the first fragmentation step, then sequential losses of rhamnose, hexose and water were observed in further fragmentations. If a substituent group presented in the beta position, the fragmentation was triggered by initial loss of a substituent group to form structures such as suspensaside A. Then it underwent the common fragmentation pathways as mentioned above, or eliminated characteristic residues of masses 134 or 152 Da, respectively. The latter pathway is reported here for the first time. The fragmentation behaviors of furofuran lignans displayed a typical cleavage of the tetrahydrofuran ring. However, the presence of a hydroxyl group at C-1 led to the successive loss of 30 Da. Neutral loss of CO(2) and benzyl cleavage were characteristic for lignans with a 2,3-dibenzylbutyrolactone skeleton. A neutral loss of 30 Da was also observed in the fragmentation pattern of flavonols. These fragmentation rules were implemented to analyze phenolic compounds in the fruits of F. suspensa. A total of 51 compounds, including 24 phenylethanoid glycosides, 21 lignans and 6 flavonols, were identified or tentatively characterized based on their retention times, UV spectra and MS fragmentation patterns.  相似文献   

19.
An ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC-ESI-MS(n)) has been developed for structural characterization and identification of multi-constituents in Yiqing Capsule, a well-known combined herbal remedy prepared from the extract mixtures of Rhizoma Coptidis, Radix et Rhizoma Rhei and Radix Scutellariae. The UPLC analysis was performed on an Agilent ZorBax SB-C(18) column (4.6 mm×50 mm, 1.8 μm) and gradient elution of 0.1% formic acid solution and acetonitrile in 16 min. Based on their retention times and mass spectra in comparison with the data from standards or references, a total of 29 compounds including 3 phenolic acids and 4 anthraquinones from Radix et Rhizoma Rhei, 8 alkaloids from Rhizoma Coptidis and 14 flavonoids from Radix Scutellariae were unambiguously identified or tentatively characterized in the complex system. The MS data and fragmentation information of two isomers of feruloylquinic acid were first reported in Radix et Rhizoma Rhei and in Yiqing Capsules. This study is expected to be accepted as an effective and reliable pattern for comprehensive and systematic characterization of this commonly used Chinese herbal preparation.  相似文献   

20.
Liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) was used for the structural characterization and differentiation of four isomeric O-monomethylated catechins (on phenolic positions) by the analysis of the fragmentation behaviour of catechin. The catechin fragmentation routes were rationalized and it is shown that several diagnostic ions such as (1,3)A(+), (1,2)B(+), and (1,4)B(+) allow the unambiguous identification of the methylated ring. The precise position of the methyl group on each ring is determined by the difference in the relative intensities of the diagnostic ions. Isomeric O-methylepicatechins were also differentiated using this methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号