首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of phenolic compounds in apple residues resulting from the juice industry was investigated to provide an alternative use for this raw material. For the identification of these compounds, liquid chromatography coupled to ionspray mass spectrometry in tandem mode (LC/MS/MS) with negative ion detection was used. The residues were first extracted and then chromatographed on Sephadex LH-20 to yield 13 fractions. Positive identification of the compounds was based on their retention times and mass spectra in full scan mode (MS), and in different MS/MS modes (product ion scan, precursor ion scan and neutral loss scan). In this way, 60 compounds, including cinnamic and benzoic acid derivatives and flavonoids, were identified, some of them not previously reported in apple waste.  相似文献   

2.
Liquid chromatography coupled with ionspray mass spectrometry in the tandem mode (LC/MS/MS) with negative ion detection was used for the identification of a variety of phenolic compounds in a cocoa sample. Gradient elution with water and acetonitrile, both containing 0.1% HCOOH, was used. Standard solutions of 31 phenolic compounds, including benzoic and cinnamic acids and flavonoid compounds, were studied in the negative ion mode using MS/MS product ion scans. At low collisional activation, the deprotonated molecule [M - H](-) was observed for all the compounds studied. For cinnamic and benzoic acids, losses of CO(2) or formation of [M - CH(3)](-*) in the case of methoxylated compounds were observed. However, for flavonol and flavone glycosides, the spectra present both the deprotonated molecule [M - H](-) of the glycoside and the ion corresponding to the deprotonated aglycone [A - H](-). The latter ion is formed by loss of the rhamnose, glucose, galactose or arabinose residue from the glycosides. Different fragmentation patterns were observed in MS/MS experiments for flavone-C-glycosides which showed fragmentation in the sugar part. Fragmentation of aglycones provided characteristic ions for each family of flavonoids. The optimum LC/MS/MS conditions were applied to the characterization of a cocoa sample that had been subjected to an extraction/clean-up procedure which involved chromatography on Sephadex LH20 and thin-layer chromatographic monitoring. In addition to compounds described in the literature, such as epicatechin and catechin, quercetin, isoquercitrin (quercetin-3-O-glucoside) and quercetin-3-O-arabinose, other compounds were identified for the first time in cocoa samples, such as hyperoside (quercetin-3-O-galactoside), naringenin, luteolin, apigenin and some O-glucosides and C-glucosides of these compounds.  相似文献   

3.
High-resolution electrospray ionization multistage tandem mass spectrometry (MS 1-7) in negative ion mode was used to determine the accurate masses and fragmentation pathways of two compounds, 4'-demethylepipodophyllotoxin and 4'-demethyl-4-azido-4-deoxyepipodophyllotoxin, which are key intermediate compounds for the preparation of podophyllotoxin-type anti-cancer drugs. The deprotonated molecules [M-H]* of both compounds were readily observed in the conventional single-stage mass spectra due to the presence of the phenolic hydroxyl group in the molecules. Abundant information on the product ions was obtained from tandem mass spectra (MS 2-7) in negative ion mode. Based on the exact masses acquired from 14 different tandem mass spectra, a similar MSn fragmentation pathway was proposed for both compounds. A characteristic product ion produced in the MS 2-4 product ion scan experiments is the cyclohexylenetrione anion [M-H-2Me-RH]* or [M-H-RH-2Me]* at m/z 351 (C19H11O7) formed by the consecutive losses of two CH3 radicals at the 3'- and 5'-positions and the neutral loss of RH, where R = a 4-substituted group (-OH or -N3), from the [M-H]* ion. This anion may be considered as diagnostic for the presence of this type of compound. The other common cleavages are the neutral losses of CO at least two times in the MS 6,7 product ion spectra. The results of this work could serve as an effective tool for the detection or determination of other derivatives of 4'-demethyl-4beta-substituted podophyllotoxin, which are widely used as intermediates for the preparation of anti-tumor drugs.  相似文献   

4.
A rapid, selective and sensitive method for analysis of trace flavonoids and its glycoside derivatives in ginkgo has proposed. Ultrasonic‐assisted extraction of sample preparation was adopted to extract trace flavonoids in ginkgo leaf and its processed product. The compounds were identified using liquid chromatography negative electrospray ionization triple quadrupole tandem mass spectrometry (MS/MS). The neutral loss scan mode of MS/MS was used to screen flavonoid compounds and those compounds with acid group, or having rhamnosyl, glucosyl, or coumaroyl moiety in the samples. The successive data‐dependent product ion scan mode of MS/MS was used to identify the structure of the components. The analytical results represented three aglycone flavonoids and seven flavonoid glycosides in ginkgo. The method detection limits were evaluated for the analytes analyzed in the range of 0.88 to 2.67 μg/mL.  相似文献   

5.
The fragmentations of hydroxylated flavanones, chalcones and dihydrochalcones were investigated by direct loop injection using an ion trap mass spectrometry equipped with atmospheric pressure chemical ionization (APCI) probe. Some of them have been isolated from the leaves of Piper hostmannianum var. berbicense and standards were used to confirm their fragmentation behaviour. In negative ion mode, fragmentations of these three types of flavonoids revealed specific diagnostic ions which allowed us to identify aglycones in a crude plant extract. The major fragment ion obtained in MS/MS experiment for methoxylated chalcones is the neutral loss of a methyl radical whereas a H(2)O molecule is lost in the case of methoxylated dihydrochalcones. Methoxylated chalcones and flavanones isomers could be differentiated by the relative intensity ratio of [M-H-CH(3)]*(-) and [M-H-C(2)H(2)O](-) ions. Based on UV and MS data, a decision tree that includes UV lambda(max) absorptions and MS/MS diagnostic ions was built in order to obtain structural information of unknown compounds present in the extract. This tree was used to identify flavonoids in the ethyl acetate extract of P. hostmannianum var. berbicense leaves after analysis by high-performance liquid chromatography-diode array detection-atmospheric pressure chemical ionization ion trap multistage mass spectrometry. A total of 11 flavonoids were tentatively characterized based on the MS fragmentations pattern observed in MS(n) experiments.  相似文献   

6.
Twenty-one samples of Sideritis species (S. scardica, S. raeseri, S. taurica, S. syriaca and S. perfoliata) from various locations on the Balkan Peninsula were evaluated for their chemical constituents. Chemical analyses were focused on secondary metabolites, particularly phenolic compounds, which have several roles in the plant physiological processes and have demonstrated significant health beneficial effects. The occurrence of hydroxycinnamic acids, phenylethanoid glycosides and flavonoids has been investigated in taxonomically related taxa of the genus Sideritis. A systematic method for phenolic compounds identification was developed using tandem mass spectrometry coupled to high performance liquid chromatography with diode array detection. Scanning for precursor ions of commonly found phenolics in Sideritis species using LC/MS11 with an ion trap instrument permitted the specific determination of hydroxycinnamic acid derivatives, and phenylethanoid and flavonoid glycosides. Further characterization of each phenolic compound was performed using MS/MS product-ion analysis and common-neutral-loss analysis. This on-line technique allowed identification of three hydroxycinnamic acid derivatives, eight phenylethanoid glycosides, and twenty-four flavonoid glycosides. All the taxa analysed produced very similar phenolic patterns characterized by the presence of 5-caffeoylquinic acid, lavandulifolioside, verbascoside, hypolaetin 7-O-[6'-O-acetyl]-allosyl(1-->2)glucoside, apigenin 7-(4"-p-coumaroylglucoside), 4'-O-methylisoscutellarein 7-O-[6'-O-acetyl]-allosyl(1-->2)glucoside, and minor amounts of isoverbascoside, apigenin 7-O-allosyl(1-->2)glucoside, isoscutellarein 7-O-allosyl-(1-->2)-[6"-O-acetyl]-glucoside, hypolaetin 7-O-allosyl-(1-->2)-[6"-O-acetyl]-glucoside and 4'-O-methylhypolaetin 7-O-[6'-O-acetyl]-allosyl-(1-->2)-[6"-O-acetyl]-glucoside. These results show that the investigated species are systematically very closely related. Phenylethanoid glycosides and flavonoid acetylglycosides are dominant and constitute 90% of the total phenolic compounds compared with hydroxycinnamic acid and flavonoid 7-O-glycosides. Principal component analysis (PCA) was performed for the nature and content of the different compounds to be correlated to the particular Sideritis species and also to the locations.  相似文献   

7.
A series of organophosphorus compounds related to PB-1 toxin [O,O-diphenyl N- cyclooctylphosphoramidate] occurring in dinoflagellate algae as fish toxin have been synthesized and subjected to mass spectral studies under electron ionization. The fragmentation pattern obtained for the compounds has been substantiated by performing tandem mass spectrometry experiments in product ion scan mode.  相似文献   

8.
Static headspace gas chromatography-tandem mass spectrometry was used to identify volatile compounds from Senecio scandens Buch-Ham. The elemental composition of compounds was confirmed by exploiting the tandem mass spectra of isotopic peaks from the precursor ion. Some isomers were well distinguished by the diversified scan technologies of tandem mass spectrometry (MS/MS). The MS/MS included a product ion scan, a precursor ion scan and a neutral loss scan. The results showed that 46 volatile compounds were completely identified, and the great of majority compounds were α-pinene (11.93%), n-caproaldehyde (9.02%) and dehydrosabinene (6.22%). This qualitative method is convenient and accurate and can be considered as a complementary identification method for the qualitative analysis of volatile compounds in complex samples.  相似文献   

9.
The phenolic components from Radix Salvia miltiorrhizae Bunge, a well-known herbal medicine (Dan-Shen in Chinese), have been investigated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS). HPLC analyses were performed on a reversed-phase C18 column using gradient elution. In the ESI mass spectra a predominant [M-H]- ion was observed in negative mode and provided molecular mass information. ESI-MS/MS spectra of the [M-H]- ions were used for structural analysis, based on the spectra of standards. It was found that caffeic acid and its monomeric analogs containing a carboxyl group readily lost CO2, while dimers, trimers and tetramers of caffeic acid expelled successively danshensu or caffeic acid or their esters. Twenty-eight phenolic compounds in S. miltiorrhizae were characterized, of which eight compounds were positively identified by comparison with standards. The remaining twenty phenolics for which standards were not available were tentatively identified based on their UV spectra and MS/MS fragmentation characteristics.  相似文献   

10.
In the present study, a methodology based on liquid chromatography with diode array detection (HPLC/DAD) coupled to an electrospray ionization (ESI) interface and a triple quadrupole mass spectrometer for the simultaneous identification of phenolic compounds in fruit juices has been developed. 72 available phenolic compound standards from diverse families present in fruits have been studied in order to analyze their fragmentation pattern. As a result, a general strategy for the characterization of unknown phenolic compounds in fruit juices was designed: (i) taking into account its UV–visible spectrum and elution order, assign the unknown polyphenol to a polyphenol class, (ii) identify the quasi-molecular ion using positive and negative MS spectra, being supported by adducts generated with solvent or sodium and molecular complexes, (iii) determinate the pattern of glycosylation in positive mode using ESI(+)-CID MS/MS product ion scan experiments, selecting the quasi-molecular ion as precursor ion, and finally, (iv) study the identity of the aglycone through ESI(+)-CID MS/MS product ion spectra from the protonated aglycone, [Y0]+. This strategy was successfully employed for the characterization of known and unknown phenolic compounds in juices from 17 different fruits.  相似文献   

11.
Liquid chromatography/ultraviolet (LC/UV) and mass spectrometry/mass spectrometry (MS/MS) libraries containing 39 phenolic compounds were established by coupling a LC and an ion trap MS with an electrospray ionization (ESI) source, operated in negative ion mode. As a result, the deprotonated [M-H]- molecule was observed for all the analyzed compounds. Using MS/MS hydroxybenzoic acid and hydroxycinnamic acids showed a loss of CO2 and production of a [M-H-44]- fragment and as expected, the UV spectra of these two compounds were affected by their chemical structures. For flavonol and flavonol glycosides, the spectra of their glycosides and aglycones produced deprotonated [M-H]- and [A-H]- species, respectively, and their UV spectra each presented two major absorption peaks. The UV spectra and MS/MS data of flavan-3-ols and stilbenes were also investigated. Using the optimized LC/MS/MS analytical conditions, the phenolic extracts from six representative wine samples were analyzed and 31 phenolic compounds were detected, 26 of which were identified by searching the LC/UV and MS/MS libraries. Finally, the presence of phenolic compounds was confirmed in different wine samples using the LC/UV and LC/MS/MS libraries.  相似文献   

12.
Electrospray ionization quadrupole time-of-flight (ESI-QqToF) mass spectra of the zwitteronic salts naloxonazine dihydrochloride 1 and naloxone hydrochloride 2, a common series of morphine opiate receptor antagonists, were recorded using different declustering potentials. The singly charged ion [M+H-2HCl](+) at m/z 651.3170 and the doubly charged ion [M+2H-2HCl](2+) at m/z 326.1700 were noted for naloxonazine dihydrochloride 1; and the singly charged ion [M+H-HCl](+) at m/z 328.1541 was observed for naloxone hydrochloride 2. Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) experiments established the fragmentation routes of these compounds. In addition to the characteristic diagnostic product ions obtained, we noticed the formation of a series of radical product ions for the zwitteronic compounds 1 and 2, and also the formation of a distonic ion product formed from the singly charged ion [M+H-HCl](+) of naloxone hydrochloride 2. Confirmation of the various established fragmentation routes was effected by conducting a series of ESI-CID-QqTof-MS/MS product ion scans, which were initiated by CID in the atmospheric pressure/vacuum interface using a higher declustering potential. Deuterium labeling was also performed on the zwitteronic salts 1 and 2, in which the hydrogen atoms of the OH and NH groups were exchanged with deuterium atoms. Low-energy CID-QqTof-MS/MS product ion scans of the singly charged and doubly charged deuteriated molecules confirmed the initial fragmentation patterns proposed for the protonated molecules. Precursor ion scan analyses were also performed with a conventional quadrupole-hexapole-quadrupole tandem mass spectrometer and allowed the confirmation of the genesis of some diagnostic ions.  相似文献   

13.
The gingerols, including [6]-, [8]-, and [10]-gingerols, a series of chemical homologs differentiated by the length of their unbranched alkyl chains, have been identified as major active components in fresh ginger rhizome. The purpose of this study was to investigate the utility of ion trap liquid chromatography/tandem mass spectrometry (LC/MS/MS) as an online tool to identify and quantify these compounds in raw or processed ginger rhizome samples. Negative mode electrospray ionization (ESI) was used in MS, MS/MS and MS(n) experiments in quadrupole ion trap instruments from two different manufacturers and in high-resolution and accurate mass MS and MS/MS experiments in a Fourier transform ion cyclotron resonance mass spectrometer to elucidate the ionization and fragmentation mechanisms of these compounds in these instruments. Positive mode ESI, which generated many more fragment ions in full scan MS even under gentle ionization conditions, was also used in LC/MS and MS/MS experiments and in direct infusion MS and MS/MS experiments. Consistent and predictable ionization and fragmentation behaviors were observed for all gingerols when analyzed in the same instrument. Instruments from different manufacturers, however, had different ionization mechanisms. The major difference between instruments was their ability to form covalent dimer adducts of the gingerols. Subsequent fragmentation patterns of the precursor ions were essentially identical. These results clearly demonstrate that LC/MS instruments produce data that cannot necessarily be replicated in other laboratories, especially if those laboratories do not have the same instrument model from the same manufacturer. This presents major problems for metabolite target analysis, metabolic profiling and metabolomics investigations, which would benefit from LC/MS mass spectrum libraries as they do from GC/MS mass spectrum libraries, because such libraries may not be valid across platforms.  相似文献   

14.
The metabolism of the anti-inflammatory drug Celecoxib in rabbits was characterized using liquid chromatography (LC)/tandem mass spectrometry (MS/MS) with precursor ion and constant neutral loss scans followed by product ion scans. After separation by on-line liquid chromatography, the crude urine samples and plasma and fecal extracts were analyzed with turbo-ionspray ionization in negative ion mode using a precursor ion scan of m/z 69 (CF(3)) and a neutral loss scan of 176 (dehydroglucuronic acid). The subsequent product ion scans of the [M - H] ions of these metabolites yielded the identification of three phase I and four phase II metabolites. The phase I metabolites had hydroxylations at the methyl group or on the phenyl ring of Celecoxib, and the subsequent oxidation product of the hydroxymethyl metabolite formed the carboxylic acid metabolite. The phase II metabolites included four positional isomers of acyl glucuronide conjugates of the carboxylic acid metabolite. These positional isomers were caused by the alkaline pH of the rabbit urine and were not found in rabbit plasma. The chemical structures of the metabolites were characterized by interpretation of their product ion spectra and comparison of their LC retention times and the product ion spectra with those of the authentic synthesized standards.  相似文献   

15.
Electrospray ionization quadrupole time-of-flight (ESI-QqToF) mass spectra of naltrindole hydrochloride 1, naltriben mesylate 2, and naltrexone hydrochloride 3, a common series of morphine opiate receptor antagonists, were recorded using different declustering potentials. Low-energy collision-induced dissociation (CID) MS/MS experiments established the fragmentation routes of these compounds. In addition, re-confirmation of the various established fragmentation routes was effected by conducting a series of ESI-CID-QqTof-MS/MS experiments using non-conventional quasi MS(n) (up to MS8) product ion scans, which were initiated by CID in the atmospheric pressure/vacuum interface using a higher declustering potential. Precursor ion scan analyses were also performed with a conventional quadrupole-hexapole-quadrupole tandem mass spectrometer and allowed the confirmation of the genesis of some diagnostic ions.  相似文献   

16.
The curcuminoids are a group of diarylheptanoid molecules that possess important pharmacological activities, particularly acting as anti-inflammatory agents. The main purpose of this study was to investigate the fragmentation behavior of the three major curcuminoids in ion trap liquid chromatography/tandem mass spectrometry (LC/MS/MS). Both positive and negative mode electrospray ionization in tandem and multidimensional MS(n) experiments in quadrupole ion trap instruments and high-resolution and accurate mass MS and sustained off-resonance irradiation (SORI) MS/MS experiments in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer were used to elucidate the main fragmentation channels of these compounds. These experiments yielded essentially the same fragmentation results in both ion trap and ICR instruments for all three curcuminoids and for their phenolic monoacetates. Major and diagnostic fragment ions were identified and their origins are proposed.  相似文献   

17.
The performance of three different types of mass spectrometers (MS) coupled to high performance liquid chromatography (HPLC) was compared for trace analysis of perfluoroalkylated substances (PFAS) and fluorotelomer alcohols (FTOHs). Ion trap MS in the full scan and product ion MS2 mode, time-of-flight (TOF) high resolution MS and quadrupole MS in the selected ion mode as well as triple quadrupole tandem MS were tested. Electrospray ionisation in the negative ion mode [ESI-] was best suited for all instruments and compounds. PFAS could only be separated by a buffered mobile phase, but the presence of buffer suppressed the ionisation of FTOHs. Therefore, two independent chromatographic methods were developed for the two compound classes. Mass spectra and product ion spectra obtained by in-source and collision induced dissociation fragmentation are discussed including ion adduct formation. Product ion yields of PFAS were only in the range of 0.3 to 12%, independent from the applied MS instrument. Ion trap MS2 gave product ion yields of 20 to 62% for FTOHs, whereas only 4.1 to 5.8% were obtained by triple quadrupole tandem MS. Ion trap MS was best suited for qualitative analysis and structure elucidation of branched isomeric structures of PFAS. Providing typical detection limits of 5 ng injected in MS2 mode, it was not sensitive enough for selective trace amount quantification. TOF high resolution MS was the only technique combining high selectivity and excellent sensitivity for PFAS analysis (detection limits of 2 to 10 pg), but lacked the possibility of MS-MS. Triple quadrupole tandem MS was the method of choice for quantification of FTOHs with detection limits in the low pg range. It is also well suited for the determination of PFAS, though its detection limits of 10 to 100 pg in tandem MS mode are about one order of magnitude higher than for TOF MS.  相似文献   

18.
The application of a new hybrid RF/DC quadrupole-linear ion trap mass spectrometer to support drug metabolism and pharmacokinetic studies is described. The instrument is based on a quadrupole ion path and is capable of conventional tandem mass spectrometry (MS/MS) as well as several high-sensitivity ion trap MS scans using the final quadrupole as a linear ion trap. Several pharmaceutical compounds, including trocade, remikiren and tolcapone, were used to evaluate the capabilities of the system with positive and negative turbo ionspray, using either information-dependent data acquisition (IDA) or targeted analysis for the screening, identification and quantification of metabolites. Owing to the MS/MS in-space configuration, quadrupole-like CID spectra with ion trap sensitivity can be obtained without the classical low mass cutoff of 3D ion traps. The system also has MS(3) capability which allows fragmentation cascades to be followed. The combination of constant neutral loss or precursor ion scan with the enhanced product ion scan was found to be very selective for identifying metabolites at the picogram level in very complex matrices. Owing to the very high cycle time and, depending on the mass range, up to eight different MS experiments could be performed simultaneously without compromising chromatographic performance. Targeted product ion analysis was found to be complementary to IDA, in particular for very low concentrations. Comparable sensitivity was found in enhanced product ion scan and selected reaction monitoring modes. The instrument is particularly suitable for both qualitative and quantitative analysis.  相似文献   

19.
Phenolic compounds are the major bioactive constituents of the Chinese herbal drug Tu-Si-Zi, which is prepared from the seeds of Cuscuta chinensis. However, seeds of C. australis also are offered under the name of this drug in the herb market. In order to make a comparison of their chemical constituents, the phenolic compounds of these two Cuscuta species were analyzed by high-performance liquid chromatography/diode-array detection/electrospray ion trap tandem mass spectrometry (HPLC/DAD/ESI-MS(n)). A total of 50 compounds were observed in the methanol extracts, including 23 flavonoids, 20 lignans and 7 quinic acid derivatives. These compounds were separated on a C18 column and identified or tentatively characterized based on UV spectra and MS fragmentation behavior. In contrast to previous reports, the phenolic patterns of these two Cuscuta species were found to be very different. Kaempferol and astragalin were the predominant constituents of C. australis, while hyperoside was the major compound in C. chinensis. Most of the identified compounds, especially the acylated flavonoid glycosides, have not previously been reported from Cuscuta species. In addition, a 30 Da neutral loss observed for flavonols was investigated and could be used to differentiate flavonoid isomers such as kaempferol and luteolin. The ESI-MS fragmentation behavior of furofuran lignans was also investigated, and a characteristic pathway is proposed. The large differences observed between the phenolic constituents of C. chinensis and C. australis strongly encouraged further comparison of the bioactivities of these two species.  相似文献   

20.
A fast liquid chromatography method with diode‐array detection (DAD) and time‐of‐flight mass spectrometry (TOF‐MS) has been developed for analysis of constituents in Flos Lonicerae Japonicae (FLJ), a traditional Chinese medicine derived from the flower bud of Lonicera japonica. The chromatographic analytical time decreased to 25 min without sacrificing resolution using a column packed with 1.8‐µm porous particles (4.6 × 50 mm), three times faster than the performance of conventional 5.0‐µm columns (4.6 × 150 mm). Four major groups of compounds previously isolated from FLJ were structurally characterized by DAD‐TOF‐MS: iridoid glycosides showed maximum UV absorption at 240 nm; phenolic acids at 217, 242, and 326 nm; flavonoids at 255 and 355 nm; while saponins had no absorption. In electrospray ionization (ESI)‐TOF‐MS experiments, elimination of a glucose unit (162 Da), and successive losses of H2O, CH3OH and CO, were generally observed in iridoid glycosides; saponins were characterized by a series of identical aglycone ions; phenolic acids typically generated a base peak at [M–H–caffeoyl]? by loss of a caffeic acid unit (162 Da) and several marked quinic acid moiety ions; cleavage of the glycosidic bond (loss of 162 or 308 Da), subsequent losses of H2O, CO, RDA and C‐ring fragmentation were the most possible fragmentation pathways for flavonoids. By accurate mass measurements within 4 ppm error for each molecular ion and subsequent fragment ions, as well as the ‘full mass spectral’ information of TOF‐MS, a total of 41 compounds including 13 iridoid glycosides, 11 phenolic acids, 7 saponins, and 10 flavonoids were identified in a methanolic extract of FLJ. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号