首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical reduction of CO2 on Sn, Cu, Au, In, Ni, Ru and Pt electrodes in methanol containing 0.1 M sodium perchlorate was studied by cyclic voltammetry and in-situ FTIR spectroscopy. Dissolved CO2 increases the cathodic current at potentials below −1.3 V vs. Ag|0.01 M Ag+ with Sn, Au, Cu, In and Ni electrodes. It is concluded from the FTIR spectra obtained that there is no reduction of CO2 on any of the metals studied, and that the only reaction product detected by Fourier transform (FT) IR spectroscopy, i.e. CO2−3, is formed by reaction of CO2 with hydroxyl anions produced in the electroreduction of residual water.In order to identify the electroreduction products of CO2 it was necessary to obtain the FTIR spectra of sodium oxalate and sodium carbonate in methanol. They were obtained by the electroreduction of oxalic acid and the alkalinization of CO2-saturated methanol respectively. It could be proved that the electroreduction of carboxylic acids to carboxylate anions in organic solvents does not require either a H-chemisorbing metal electrode, or the presence of water in the solvent.  相似文献   

2.
DNA as a medium for electron transfer has been widely used in photolytic processes but is seldom applied to dark reaction of CO2 reduction. A G‐quadruplex nanowire (tsGQwire) assembled by guanine tetranucleotides was used to host several metal complexes and further to mediate electron transfer processes in the electrochemical reduction of CO2 catalyzed by these complexes. The tsGQwire modified electrode increased the Faradaic efficiency of cobalt(II) phthalocyanine (CoIIPc) 2.5‐folds for CO production than bare CoIIPc electrode, with a total current density of 11.5 mA cm?2. Comparable Faradaic efficiency of HCOOH production was achieved on tsGQwire electrode when the catalytic center was switched to a GQ targeting Ru complex. The high efficiency and selectivity of electrocatalytic CO2 reduction was attributed to the unique binding of metal complexes on G‐quadruplex and electron transfer mediated by GQ nanowire to achieve efficient redox cycling of catalytic centers on the electrode.  相似文献   

3.
This study describes the electrochemical, in situ spectroelectrochemical, in situ electrocolorimetric and electrocatalytic characterization of metallophthalocyanines bearing four dioctylaminocarbonyl biphenyloxy groups (MPc's). While CoPc gives both metal‐based and ring‐based redox processes, ZnPc and CuPc show only ring‐based reduction and oxidation processes. In‐situ electrocolorimetric method was applied to investigate color of the electrogenerated anionic and cationic forms of the complexes. Perchloric acid titrations monitored by cyclic voltammetry and spectrophotometry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CuPc having inactive metal center incorporated into a Nafion film on GCE decreases overpotential of the electrode for H+ reduction in aqueous solution.  相似文献   

4.
New films of the iron complexes with bis((2-hydroxyphenyl)methylaminosulfonyl)bathophenanthroline(HPBP) and bis((2-aminophenyl)methylaminosulfonyl)bathophenanthroline(APBP) ligands are prepared on the electrode surfaces by electrochemical polymerization. The resulting film-coated electrode shows a well-defined reversible voltammogram corresponding to the redox reaction of the Fe(II/III) complexes and an electrochromic change from red(absorption maximum: 540 nm) to colorless. The response rate of the color change to a potential step was found to be correlated to the apparent diffusion coefficient(Dapp) for the homogeneous charge-transport process within the film. The Dapp values estimated are (3-4) × 10−9cm2s−1 for the [Fe(APBP)3] film and(1-2) × 10−8cm2s−2 for the [Fe(HPBP)3] film, respectively, by potential-step chronoamperometric and chronocoulometric methods. The result of electrochemical quartz crystal microbalance(EQCM) measurements4) and dependence of the formal potential of the metal complex of the Fe(II/III) redox couple with activity of the supporting electrolyte anion in NaClO4 aqueous solution showed that anion, cation, and solvent move simultaneously across the polymer film/solution interface during the redox reaction. A piezoelectric admittance measurement4) of the poly[Fe(APBP)3] coated quartz crystal electrode showed that the viscosity of the film is affected by the oxidation state of iron.  相似文献   

5.
Azapropanedithiolate (adt)‐bridged model complexes of [FeFe]‐hydrogenase bearing a carboxylic acid functionality have been designed with the aim of decreasing the potential for reduction of protons to hydrogen. Protonation of the bisphosphine complexes 4 – 6 has been studied by in situ IR and NMR spectroscopy, which revealed that protonation with triflic acid most likely takes place first at the N‐bridge for complex 4 but at the Fe? Fe bond for complexes 5 and 6 . Using an excess of acid, the diprotonated species could also be observed, but none of the protonated species was sufficiently stable to be isolated in a pure state. Electrochemical studies have provided an insight into the catalytic mechanisms under strongly acidic conditions, and have also shown that complexes 3 and 6 are electro‐active in aqueous solution even in the absence of acid, presumably due to hydrogen bonding. Hydrogen evolution, driven by visible light, has been observed for three‐component systems consisting of [Ru(bpy)3]2+, complex 1 , 2 , or 3 , and ascorbic acid in CH3CN/D2O solution by on‐line mass spectrometry.  相似文献   

6.
Conductive polymers of aniline were synthesized in aqueous acidic media such as perchloric, sulfuric, hydrochloric, phosphoric, and trifluoroacetic acids and the effect of supporting electrolyte was investigated. The conductivity of each polyaniline (PAn) sample was determined by the four-probe technique. PAn (H2SO4) sample was shown to have the highest conductivity, specifically, 3.55 S cm–1. The effect of concentrations of monomers and acids on the conductivity of PAn's was studied. It was observed that the conductivity decreased with increasing aniline concentration and increased with increasing sulfuric acid concentration. The conductivities of PAn (CF3COOH) were also investigated in different supporting electrolytes and highly good increments of its conductivities were obtained. Magnetic properties of the PAn salts were analyzed by Gouy balance measurements and it was found that their conducting mechanisms are of bipolaron nature. From the FTIR analysis it was found that polymerization occurs via the –NH2 group in a head-to-tail mechanism. The thermal analyses revealed that PAn (HCl) among the PAn salts studied shows the highest thermal stability. Surface analyses of polymers were clarified by scanning electron microscopy. From elemental analysis results, PAn salts were concluded to be in emeraldine structure.  相似文献   

7.
Mehmet Kandaz  At&#x;f Koca 《Polyhedron》2009,28(14):2933-2942
α- and β-substituted tetrakis(6-hydroxyhexylthiol) phthalocyaninato manganese (III) chloride complexes have been prepared via cyclotetramerization. Both complexes have been characterized by elemental analysis, FTIR, MS and UV–Vis spectral data. The voltammetric and in situ spectroelectrochemical studies reveal that both complexes exhibit an oxidation and three reduction processes having reversible, one-electron, and diffusion controlled mass transfer characteristics, which are assigned to MnIIIPc2−/MnIVPc2−, MnIIIPc2−/MnIIPc2−, MnIIPc2−/MnIPc2−, and MnIPc2−/MnIPc3− couples respectively. The existence of oxygen in solution significantly affects the in situ spectroelectrochemical behavior of the complexes due to the formation of μ-oxo MnPc species. An in situ electrocolorimetric method has been applied to investigate the colors of the electro-generated anionic and cationic forms of the complexes for the first time in this study. The complexes, coated on a glassy carbon electrode potentiostatically, show considerable high electrocatalytic activity to hydrogen evolution reactions in aqueous solution.  相似文献   

8.
以铂为基底电极,在1-乙基咪唑三氟乙酸盐(HEImTfa)离子液体中电化学合成导电聚吡咯(PPy),制得PPy-HEImTfa/Pt电极;采用循环伏安法研究了PPy-HEImTfa/Pt电极对抗坏血酸的电催化氧化性能.结果表明:PPy-HEImTfa/Pt电极对0.1mo·lL-1抗坏血酸具有较高的电催化氧化活性,与相同条件下硫酸溶液中在铂表面修饰的聚吡咯(PPy-H2SO4/Pt)电极和裸铂电极相比,其氧化峰电位分别降低了0.10和0.19V,氧化峰电流分别增加了3.0和3.6mA.同时采用原位傅里叶变换红外(insitu FTIR)光谱技术对抗坏血酸在PPy-HEImTfa/Pt电极上的电氧化机理进行了研究,结果表明:抗坏血酸在PPy-HEImTfa/Pt电极上首先被氧化为脱氢抗坏血酸,在水溶液中脱氢抗坏血酸迅速发生水合作用形成水合脱氢抗坏血酸,它进一步水解并发生内酯开环反应生成2,3-二酮古洛糖酸;在较高电位下,部分抗坏血酸最终被氧化成CO2.  相似文献   

9.
In situ transmission difference FTIR spectroscopy method was introduced for studying the anodic oxidation of methanol in acid aqueous solution. A minigrid Pt optically transparent thin layer electrode was used as working electrode. This method has the ability to clarify the identity of species involved in the oxidation process both in solution and adsorbed at the surface of electrode. From the results of in situ transmission difference FTIR spectroscopy measurement it was found that HCHO, HCOOH, HCOOCH3 and CH2(OCH3)2 could be formed in the oxidation process of methanol. The final product was CO2. The adsorbed poisonous intermediate CO was detected. It was formed at near 0.6 V and became significant at 0.9 V, where the oxidation current was inhibited. The in situ transmission difference FTIR spectroscopy method is a very convenient, relative simplicity and efficient method for investigating the electrochemical process, and could be as a good candidate for further application.  相似文献   

10.
A Ni(II) complex, [NiII(Me4-NO2Bzo[15]tetraeneN4)], was used for electrocatalytic reduction of CO2 in acetonitrile solvent. Then, the reduced form of CO2 (CO2?) was used for selective carboxylation of phenylacetylene to produce cinnamic acid at room temperature. The potential of the process is significantly less negative in comparison with those reported earlier. Using sacrificial magnesium electrode as anode, controlled potential coulometry was carried out in an undivided glass cell. The spectral characterizations of FTIR, 1H NMR, and 13C NMR demonstrated that cinnamic acid was the main product of the electrolysis. With respect to other catalysts, which have been previously reported in the literature, application of the Ni(II) complex in carboxylation of unsaturated compounds has three advantages: (1) the selectivity in the production of cinnamic acid; (2) more increase in the reduction current indicating that the carboxylation of phenylacetylene is fast; and (3) the potential shift of electrocatalytic reduction of CO2 to less negative values showing that the Ni(II) complex has an excellent electrocatalytic activity for CO2 reduction. According to the voltammetric and coulometric results, an EC′CCC′C mechanism was proposed for the electrocatalytic synthesis of cinnamic acid.  相似文献   

11.
The cation of the supporting electrolyte was found to play an important role in the electrochemical reduction of highly concentrated CO2 in a CO2 + methanol medium. Electroreduction of CO2 with tetrabutylammonium (TBA) salts yielded CO as the main product, while methyl formate was predominantly formed when lithium salts were used as supporting electrolytes. The latter supporting electrolytes showed a higher overvoltage than the former. When TBA salt was used, the reduction of CO2 was catalysed by TBA ion to yield CO−.2. This intermediate may be stabilized by forming an ion pair, {TBA+---CO−.2}, or by being adsorbed on the electrode surface as CO−.2ad. Then CO−.2 reacts with CO2 to produce CO. The hydrophobic atmosphere at the electrode provided by TBA ion may be adequate for CO production. Lithium ion, on the other hand, suppressed the reduction of CO2.  相似文献   

12.
The reaction of [Ru(bpy)2Cl2] and Na2[Fe(CN)4(dmso)2] complexes with isonicotinic acid immobilized on silica spheres (Si-ATPS-ISN) followed by a NO bubbling produced Si-ATPS-ISN-[Ru(bpy)2(NO)] (system I) and Si-ATPS-ISN-[Fe(CN)4(NO)] (system II). The characterization of these systems was carried out by UV–Vis, FTIR spectroscopy and electrochemical techniques. As judged by the FTIR data, the nitric oxide ligand has an NO+ character in both systems (ν(NO+): 1938 cm−1). The NO release, which was monitored by means of FTIR, electrochemistry, and NO sensor electrode, was observed for both systems upon white light irradiation and chemical reduction by cysteine. These results indicated that the system (II) presents a higher potential for controlled NO release. The characterization (FTIR and UV–Vis) of the systems after the NO release suggested the formation of the aqua systems ATPS-ISN-[Ru(bpy)2(OH2)] and ATPS-ISN-[Ru(bpy)2(OH2)].  相似文献   

13.
《Polyhedron》1987,6(6):1319-1323
The reactions of salicylaldehyde with a suspension of cyanoacetylhydrazine and/or malonic acid amido-hydrazide complexes in aqueous ethanolic solutions afford novel complexes. The structures of the isolated complexes have been elucidated by conventional physical and chemical measurements. The absence of the cyano group band at 2270 cm−1 in the IR spectra of all complexes, except those of CO(II) and Ni(II) complexes, suggests the promotion of H2O to the cyano group (CN) forming amido group. Several structures have been proposed in which salicylaldehyde behaves differently toward the cyanoacetylhydrazine complexes. Also, 1-salicylhydrazo-3-imino-3-(o-formyl) phenoxy propionic acid hydrazide is synthesized either by extraction from the isolated solid complexes using disodium ethylene-diaminetetraacetate or during refluxing of Co(II) and/or Fe(II) complexes with salicylaldehyde. This novel compound is confirmed by elemental analysis, spectra (IR and 1H NMR) and mass spectra.  相似文献   

14.
The effect of the metal center of [ML] complexes [M = Ni(II), Cu(II); L = N,N′-ethylenebis(acetylacetoniminato)] on their electrochemistry and electrocatalytic activity for the reduction of CO2 and protons has been studied using cyclic voltammetry and bulk electrolysis. The two complexes exhibit different electrochemistries, which are not significantly dependent on the nature of the solvent. The electrocatalytic activity of [NiL] is significantly higher than that of [CuL] for CO2 reduction, due to the higher stability of the electrochemically generated [Ni(I)L] complex, relative to the Cu(I) analog. The diffusion coefficient of [NiL] calculated from the steady-state diffusion limiting current is 3.0 × 10?6 cm2 s?1. The catalytic efficiency of [NiL] in non-aqueous solvents in terms of i p(CO2)/i p(N2) per nickel center is smaller than that of [Ni(cyclam)]2+, but greater than those of sterically hindered mononuclear [Ni(1,3,6,8,10, 13,15-heptaazatricyclo(11.3.1.1) octadecane)]2+ or multinuclear [Ni3 (X)]6+ where X = 8,8′,8″-{2,2′,2″(-nitrilotriethyl)-tris(1,3,6,8,10,13,15-heptaazatricyclo(11.3.1.1) octadecane}. Both [NiL] and [CuL] are also electrocatalysts for the reduction of carboxylic acid protons, with the catalytic pathway being different for acetic and trifluoroacetic acids in MeCN.  相似文献   

15.
Cyclic voltammetry has been employed to examine the electrochemistry of nickel(II) salen at a glassy carbon electrode in an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, BMIM+BF4). Residual water in the ionic liquid can be eliminated by introduction of activated molecular sieves into the electrochemical cell. Nickel(II) salen exhibits a one-electron, quasi-reversible reduction to nickel(I) salen, and the latter species serves as a catalyst for the cleavage of carbon–halogen bonds in iodoethane and 1,1,2-trichlorotrifluoroethane (Freon® 113). In BMIM+BF4 the diffusion coefficient for nickel(II) salen at room temperature has been determined to be 1.8×10−8 cm2 s−1, which is more than 500 times smaller than that (1.0×10−5 cm2 s−1) in a typical organic solvent–electrolyte system such as dimethylformamide (DMF) containing 0.10 M tetramethylammonium tetrafluoroborate.  相似文献   

16.
The first X‐ray single‐crystal structure of a {FeNO}8 porphyrin complex [Co(Cp)2][Fe(TFPPBr8)(NO)], and the structure of the {FeNO}7 precursor [Fe(TFPPBr8)(NO)] are determined at 100 K. The two complexes are also characterized by FTIR and UV/Vis spectroscopy. [Fe(TFPPBr8)(NO)]? shows distinct structural features in contrast to a nitrosyl iron(II) porphyrinate on the Fe? N? O? moiety, which include a much more bent Fe? N? O? angle (122.4(3)°), considerably longer Fe? NO? (1.814(4)) and N? O? (1.194(5) Å) bond distances. These and the about 180 cm?1 downshift νN‐O stretch (1540 cm?1) can be understood by the covalently bonding nature between the iron(II) and the NO? ligand which possesses a two‐electron‐occupied π* orbital as a result of the reduction. The overall structural features of [Fe(TFPPBr8)(NO)]? and [Fe(TFPPBr8)(NO)] suggest a low‐spin state of the iron(II) atom at 100 K.  相似文献   

17.
Herein, we report the controlled and direct fabrication of Cu2O/CuO thin film on the conductive nickel foam using electrodeposition route for the electrochemical reduction of carbon dioxide (CO2) to methanol. The electrocatalytic reduction was performed in CO2 saturated aqueous solution consisting of KHCO3, pyridine and HCl at room temperature. CO2 reduction was carried out at a constant potential of −1.3 V for 120 min to study the electrochemical performance of the prepared electrocatalysts. Cu2O/CuO shows better electrocatalytic activity with highest current density of 46 mA/cm2. The prepared catalyst can be an efficient and selective electrode for the production of methanol.  相似文献   

18.
The comparative study on the photophysical properties between cheap metal Fe (II) complexes and noble metal Ru (II) complexes with identical ligand coordination is performed by the combination of density functional theory (DFT) and time-dependent density functional theory (TDDFT) to evaluate the potential alternative applications of Fe (II) complexes. RuBIP (BIP = 2,6-bis (imidazol-2- ylidene)pyridine) is theoretically established that the radiative lifetime of the second lowest triplet state is more consistence with experimental value. However, FeBIP retains nonluminous because of low-lying 3MC originated from weak d orbital splitting. FeBIPC (FeBIP with carboxylic acid groups) has twice longer lifetime than its parent complex FeBIP due to the great decrease of the energy gap between 3MLCT and 3MC. What's more, the lifetimes of Fe (II) complexes detected in the experiments are more accessible to nonradiative decay lifetimes of 3MC. The carboxylic acid groups are beneficial for the improvement of luminescent possibility and controllability of Fe (II) complexes, while there is still a huge challenge for effective material replacement comparing with Ru (II) complexes.  相似文献   

19.
Reduction of palladium(II) glycinate complexes in strongly acid 0.5 M NaClO4 solutions (pH 0.6 and 1.0) with variable palladium(II) complex and free glycine concentration was studied by the taking of cyclic voltammograms at palladium rotating disc electrode. It is shown that it was a chelate monoglycinate palladium(II) complex that was present in all studied solutions and underwent the reduction. The diffusion coefficient of the chelate monoglycinate palladium(II) complex D = (6.5 ± 0.5) × 10−6 cm2/s was determined from the limiting diffusion current of the complex reduction. The monoglycinate palladium(II) complex reduction occurred in the double-layer segment of the palladium charging curve; it was not complicated by hydrogen adsorption at electrodes. The palladium(II) complex reduction half-wave potential was determined (E 1/2 = ∼0.300 to 0.330 V (SCE)). It is shown that the decreasing of the number of ligands coordinated by palladium via nitrogen atom facilitates the complex reduction process. In particular, the reduction potentials of palladium(II) complexes with different ligand number at palladium electrode shifted markedly toward negative potentials in the series: Pdgly+ < Pd(gly)2 < Pd(gly)42−.  相似文献   

20.
Metal complexes of Niacin (3-pyridin carboxylic acid) were prepared in aqueous medium and characterized by different physico-chemical methods. On the basis of elemental analysis the empirical formula of the complexes have been proposed as [Fe(C6H4NO2)]Cl2, [Co(C6H4NO2)]Cl, [Zn(C6H4NO2)]Cl, [Cd(C6H4NO2)]Cl and [Hg(C6H4NO2)]Cl. IR spectral data indicate that the metal-ligand bonding occurs through nitrogen atom of aromatic ring and oxygen atom of COO-group. UV-visible spectra show that Fe(III) and Co(II) complexes show d-d electronic transition in addition to π → π*, n → π* and n → σ* transitions. The Fe(II) and Co(II) complexes are paramagnetic. QSTG analysis data strongly support the absence of water molecules in the complexes, and the weight of the residue corresponds to the respective metal oxides. Cyclic voltammetric studies suggest that the redox properties of Zn(II), Cd(II) and Hg(II) in their complexes are modified compared to the uncoordinated metal ion. The CV data also indicate that the charge transfer processes are not reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号