首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Ferroelectric SBT (Sr/Bi/Ta = 0.8/2.3/2) thin films on Pt/ZrO2/SiO2/Si were successfully prepared by using an alkanolamine modified chemical solution deposition method. Acetic acid as a solvent led to the formation of water in the solution, which might continuously induce the hydrolysis and condensation of the precursors, leading to reducing the stability of the solution with aging time. It was observed that alkanolamine provided the stability to the SBT solution by retarding the hydrolysis and condensation rates. This solution could be used as long as up to 30 days without any appreciable change of the solution properties. The typical hysteresis loop of SBT thin films was obtained at 2 V, and it was fully saturated even below an applied voltage of 3 V (2Pr 16 C/cm2). The measured 2Pr value of the SBT thin film at 5 V was almost 20 C/cm2. Fatigue and breakdown characteristics of the films, measured at 5 V, showed a stable behavior, and negligible degradation was observed up to 1010 cycles.  相似文献   

2.
Human acetylcholinesterase (AChE) is a widely studied target enzyme in drug discovery for Alzheimer’s disease (AD). In this paper we report evaluation of the optimum structure and chemistry of the supporting material for a new AChE-based fluorescence sensing surface. To achieve this objective, multilayered silicon wafers with spatially controlled geometry and chemical diversity were fabricated. Specifically, silicon wafers with silicon oxide patterns (SiO2/Si wafers), platinum-coated silicon wafers with SiO2 patterns (SiO2/Pt/Ti/Si wafers), and Pt-coated wafers coated with different thicknesses of TiO2 and SiO2 (SiO2/TiO2/Pt/Ti/Si wafers) were labelled with the fluorescent conjugation agent HiLyte Fluor 555. Selection of a suitable material and the optimum pattern thickness required to maximize the fluorescence signal and maintain chemical stability was performed by confocal laser-scanning microscopy (CLSM). Results showed that the highest signal-to-background ratio was always obtained on wafers with 100 nm thick SiO2 features. Hence, these wafers were selected for covalent binding of human AChE. Batch-wise kinetic studies revealed that enzyme activity was retained after immobilization. Combined use of atomic-force microscopy and CLSM revealed that AChE was homogeneously and selectively distributed on the SiO2 microstructures at a suitable distance from the reflective surface. In the optimum design, efficient fluorescence emission was obtained from the AChE-based biosensing surface after labelling with propidium, a selective fluorescent probe of the peripheral binding site of AChE.
Figure
Micropatterned silicon wafers containing covalently bound human acetylcholinesterase. The binding and displacement of the fluorescent probe propidium (red areas) from the enzyme's peripheral binding site is visualized by scanning laser microscopy  相似文献   

3.
MoS2 thin films with marigold flower-like nanostructures were grown on conductive fluorine-doped tin oxide (FTO) substrates through a one-step hydrothermal synthesis for their application as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). Different MoS2 thin film samples (A–D) were grown on FTO slides using different concentrations of precursors (sodium molybdate and thioacetamide), while keeping the Mo/S molar ratio constant (1:4.6), in all samples. The effect of varying precursor concentrations (3.2–12.6 mM on MoS2 basis) on the structure of the nanostructured thin films and their performance as DSSC-CEs was investigated. Scanning electron microscopy revealed a material with an infolded petal-like morphology. With increasing precursor concentration, the petal-like structures tended to form bunched nanostructures (100–300 nm) resembling marigold flowers. X-ray diffraction analysis, X-ray photoelectron, and Raman spectroscopy studies showed that the thin films were composed of hexagonal MoS2 with good crystallinity. Hall effect measurements revealed MoS2 to be a p-type semiconductor with a carrier mobility of 219.80 cm2 V?1 s?1 at room temperature. The electrochemical properties of the thin films were examined using cyclic voltammetry and electrochemical impedance spectroscopy. The marigold flower-like MoS2 thin films showed excellent electrocatalytic activity towards the I¯/I3¯ reaction and low charge transfer resistance (Rct) values of 14.77 Ω cm?1, which was close to that of Pt electrode (12.30 Ω cm?1). The maximum power conversion efficiency obtained with MoS2 CE-based DSSCs was 6.32%, which was comparable to a Pt CE-based DSSC (6.38%) under one sun illumination. Similarly, the maximum incident photon-to-charge carrier efficiency exhibited by MoS2 CE-based DSSCs was 65.84%, which was also comparable to a Pt CE-based DSSC (68.38%). The study demonstrated that the marigold flower-like nanostructured MoS2 films are a promising alternative to the conventional Pt-based CEs in DSSCs.
Graphical abstract ?
  相似文献   

4.
Lead zirconate titanate (PZT) thin films were deposited on Pt/Ti/SiO2/Si and interlayer/Pt/Ti/SiO2/Si substrate by radio frequency (r.f.) magnetron sputtering with a Pb1.1Zr0.53Ti0.47O3 target. The crystallization of the PZT thin films was formed only by substrate temperature. When interlayer (PbO/TiO2) was inserted between the PZT thin film and the Pt electrode, the grain growth and processing temperature of the PZT thin films were considerably improved. Compared to PZT/Pt structure, the dielectric constant and polarization properties of the PZT/interlayer/Pt structure were fairly improved. In particular, PZT/interlayer/Pt at the substrate temperature of 400 °C showed prevalent ferroelectric properties (r=475.97, tanδ=0.0591, Pr=23 μC/cm2). As a result of an X-ray photoelectron spectroscopy (XPS) depth-profile analysis, it was found that PZT/interlayer/Pt deposited only by substrate temperature without the post-annealing process via r.f. magnetron sputtering method remained independent of each other regardless of substrate temperatures.  相似文献   

5.
A comparative study of dipyrido-and dibenzo-substituted 1,4-diazines {dipyrido[f,h]quinoxaline (dpq), dipyrido[a,c]phenazine (dppz), 6,7-dicyanodipyrido[f,h]quinoxaline (dicnq), dibenzo[f,h]quinoxaline, dibenzo[a,c]phenazine, 6,7-dicyanodibenzo[f,h]-quinoxaline}, o-phenantroline (phen), and also of the complexes [Pt(N∧C)(N∧N)]+[(N∧C)? are deproronated forms of 2-phenylpyridine and 2-(2-thienyl)pyridine; (N∧N) is ethylenediamine, phen, dpq, dppz, dicnq] was carried out by the methods of 1H NMR, electronic absorption, and emission spectroscopy and by cyclic voltammetry. It was found that in frozen solutions of [Pt(N∧C)·(N∧N)]+ complexes the photoexcitation energy decay from two lowest in energy electronic excited states has isolated character and is localized on {Pt(N∧C)} and {Pt(N∧N)} metal-complex fragments: (d N∧C * ) and (d phen * ) [(N∧N) = phen, dpq, dicnq)] or (d N∧C * ) and (π-π diaz * ) [(N∧N) = dppz]. Thermal quenching of the luminescence from the (d phen * ) and (π-π diaz * ) states gives rise to luminescence of the complexes in liquid solutions at 293 K only from the (d N∧C * ) state.  相似文献   

6.
The formal potentials of the Hg2+/Hg 2 2+ , Hg 2 2+ /Hg and Hg2+/Hg redox couples and the apparent equilibrium constants of the reaction Hg2+ + Hg ∝ Hg 2 2+ in conc. aqueous solutions of Mg(ClO4)2 and Ca(ClO4)2 have been determined from emf measurements performed using cells with liquid junction. Based on these data, the hydration numbers of the Hg2+ and Hg 2 2+ ions were estimated.  相似文献   

7.
We explore here the ability of ruthenium hydroxo species to undergo spontaneous deposition on Pt nanoparticles and to form colloidal solutions of oxoruthenium-protected (-stabilized) nanoparticles of Pt. These particles can be spontaneously attracted to carbon substrates, and they form ultrathin self-assembled films. Fabrication of the multilayer network films on electrodes has been achieved by linking the positively charged oxoruthenium-covered Pt clusters with heteropolyanions of tungsten. By repeated alternate treatments in a solution of phosphododecatungstate (PW12O403–) and in a colloidal suspension of oxoruthenium-protected (-stabilized) Pt nanoparticles, the film thickness can be increased systematically (layer by layer) to form stable three-dimensional assemblies on carbon electrodes. It is apparent from cyclic voltammetric and chronoamperometric measurements (that were performed at 20 and 60 °C) that the resulting hybrid films show attractive properties towards the oxidation of methanol at fairly low potentials (0.25–0.4 V versus the saturated calomel electrode). With approximately the same loading of oxoruthenium-covered Pt nanoparticles and under analogous conditions, linking or derivatizing the nanoparticles with phosphotungstate leads to the systems higher electrocatalytic activity. It is possible that, in addition to ruthenium hydroxo species, PW12O403– exhibits an activating effect on dispersed Pt particles. An alternative explanation may involve the possibility of different morphologies of the catalytic films in the presence and absence of phosphotungstate anions.Dedicated to Zbigniew Galus on the occation of his 70th birthday  相似文献   

8.
The interactions of Al2O3, CeO2, Pt/Al2O3, and Pt/CeO2 films with SO2, SO2 + H2O, SO2 + O2, and SO2 + O2 + H2O in the temperature range 300–673 K at the partial pressures of SO2, O2, and H2O equal to 1.5 × 102, 1.5 × 102, and 3 × 102 Pa, respectively, were studied using X-ray photoelectron spectroscopy. The formation of surface sulfite at T 473 K (the S 2p 3/2 binding energy (E b) is 167.5 eV) and surface sulfate at T 573 K (E b = 169.2 eV) was observed in the reactions of Al2O3 and CeO2 with SO2. The formation of sulfates on the surface of CeO2 occurred much more effectively than in the case of Al2O3, and it was accompanied by the reduction of Ce(IV) to Ce(III). The formation of aluminum and cerium sulfates and sulfites on model Pt/Al2O3 and Pt/CeO2 catalysts occurred simultaneously with the formation of surface platinum sulfides (E b of S 2p 3/2 is 162.2 eV). The effects of oxygen and water vapor on the nature and yield of sulfur-containing products were studied.  相似文献   

9.
Sol-gel derived Y2O3 thin films have been prepared on platinum coated silicon wafers and fired to temperatures ranging from 400°C to 750°C. Multiple coats were used to obtain films up to 0.5 m thick with an intermediate firing of 400°C between coatings. Top Pt electrodes were sputtered to form monolithic capacitors. These films exhibited a dielectric constant of 18 and a leakage current of 10–11–10–7 A/cm2, making them attractive candidates for high dielectric constant dielectric films in high density DRAMs.  相似文献   

10.
A direct measurement of collisionally induced fission of C 60 2+ has been performed. We have measured coincidences between various charged fragments resulting from collisions between C 60 2+ and He atoms. The measurements show that C 60 2+ not only emits C2 units but also breaks up into larger, singly charged parts. In this paper, we report on coincidences between C n + (2≦n≦9) and C m + (42≦m≦48) fragment ions.  相似文献   

11.
BaTiO3 and PZT films were prepared from alkoxide-acetate solutions containing polyvinylpyrrolidone (PVP) by non-repetitive dip-coating. It was demonstrated that PVP incorporated in gel films suppresses crack formation during heating and increases the critical thickness, the maximum thickness achievable without crack formation via single-step deposition. Using PVP crack-free BaTiO3 and PZT films 1.2 and 0.5 m in thickness could be prepared, respectively, via single-step dip-coating. The films were fairly transparent and dense in microstructure. The tensile stress in heat-treated BaTiO3 films was also demonstrated to decrease significantly by incorporating PVP in gel films.  相似文献   

12.
Surface-impact dissociation of I 2 - (CO2)n was studied by a molecular dynamics simulation in comparison with the experimental results. The branching fraction, ? dis, of the I 2 - dissociation was calculated as a function of the parent cluster size, n. This computational result reproduces the experimental one. We calculated a number of the I 2 - dissociation events starting from given initial orientations. The most favorable molecular orientation obtained supports the wedge effect in which a CO2 molecule located at the waist position of the I 2 - core ion splits the I 2 - bond as if a piece of wood is split by a mechanical thrust against a wedge. The time profile of the wedge action calculated for the I 2 - (CO2) impact shows that more than 20 % of the collision energy is converted to the vibrational energy of the I 2 - .  相似文献   

13.
Stress and Cracks in Gel-Derived Ceramic Coatings and Thick Film Formation   总被引:2,自引:0,他引:2  
Residual stress was evaluated by measuring the substrate curvature for alkoxide-derived silica and titania films deposited on silica glass substrates. The residual stress was tensile, increasing with increasing heat-treatment temperature. The stress in fired films was affected greatly by water/alkoxide ratio and chelating agents in starting solutions. Secondly, in situ observation was made on cracking of gel films subjected to heat-treatment. Silica and titania gel films deposited on silicon wafers were cracked in the heating-up stage at temperatures of 100°–400°C, depending on the film thickness and heating rate. Larger thickness and lower heating rates were found to lower the cracking onset temperature. Finally, organic polymers with amide groups were demonstrated to increase the uncracking critical thickness. The polymers include polyvinylpyrrolidone and polyvinylacetamide, allowing single layer ceramic coating films over 1 m in thickness to be formed without cracking.  相似文献   

14.
N-acetyl-l-cysteine (NAC) is an antioxidant and a supplement and has been demonstrated to have protective effects for a variety of toxic effects of heavy metals. Although previous works have shown that NAC can ameliorate the severe toxic effects of cisplatin, there is a lack of understanding of the interactions between NAC and Pt(IV)-based prodrugs. In this work, the oxidation of NAC by a cisplatin prodrug (cis-[Pt(NH3)2Cl4]), by a prototype of Pt(IV) anticancer drug ormaplatin ([Pt(dach)Cl4]) and by a model compound (trans-[PtCl2(CN)4]2–) was characterized in detail. NAC was oxidized to NAC-disulfide as identified by mass spectrometric analysis. Time-resolved spectral and stopped-flow kinetic measurements were carried out over a wide pH range, demonstrating that the oxidation followed overall second-order kinetics. The observed second-order rate constants k′ versus pH profiles were established. A reaction mechanism was deduced, involving three parallel rate-determining steps; conceivable transition states were also proposed for these steps. Rate constants of the rate-determining steps, obtained from the simulations of rate equation to the k′–pH profiles, were largely correlated with the electron density on the sulfur atom in NAC. The Pt(IV) prodrugs can execute oxidative stress in the biological systems of the human body by direct oxidation of relevant molecules, similar to HOCl/OCl? and chloroamines. Instead, the oxidative stress involved in the severe toxic effects of cisplatin is produced via a different mode. NAC could be a chemoprotecting agent also for the Pt(IV) anticancer drugs if recent drug delivery technologies are used.  相似文献   

15.
Phase pure powder and thin films of the novel ferroelectric materials SrBi2Ta2O9 (SBT) have been prepared using the organic precursors. The xero-gel formed was dried and characterized using TGA and DTA to determine the organic burn out and crystallization temperature of SBT. Powder X-ray diffraction was used systematically to check the crystallinity of SBT. Phase pure SBT powder was formed as low as 650°C and thin films at 600°C in comparison to other earlier reported work. SEM micrographs show a grain size of ≈0.1 μm and show crack free films with a film thickness of 2 μm.  相似文献   

16.
Nanocrystalline tin dioxide modified by Pd and Pt clusters or by bimetallic PdPt nanoparticles was synthesized. Distribution of the modifers on the SnO2 surface was studied by high-resolution transmission electron microscopy and energy dispersive X-ray microanalysis with element distribution mapping. It was shown that the Pd/Pt ratio in bimetallic particles varies over a broad range and does not depend on the particle diameter. The effect of platinum metals on the reducibility of nanocrystalline SnO2 by hydrogen was determined. The sensing properties of the resulting materials towards 6.7 ppm CO in air were estimated in situ by electrical conductivity measurements. The sensor response of SnO2 modified with bimetallic PdPt particles was a superposition of the signals of samples with Pt and Pd clusters.  相似文献   

17.
Liquid phase hydrogenation of benzonitrile was studied over Sn-Pt/SiO2 catalysts prepared by introducing tetraethyl tin onto the 3 wt.% Pt/SiO2 catalyst. Tin content of the catalysts ranged from 0.05 to 0.63 wt.%, whereas Sn/Pt surface atomic ratios determined by chemisorption measurements were between 0.1 to 3.5. Dibenzylamine selectivity influenced to a small extent by the level of conversion and the Sn/Pt ratio wasca. 75 %. The addition of tin to Pt in the range of (Sn/Pt)surface = 0.50–1.25 led to an increase in the turnover frequency (TOF) by a factor of 2. TOF showed a maximum at a surface atomic ratio of Sn/Pt = 1. The enhancement of catalyst activity upon the addition of tin is explained by the formation of Sn+-Pt ensemble sites on the surface of bimetallic nanoclusters. It is suggested that highly dispersed positively charged tin species, by polarizing the triple bond, enhance the reactivity of the -CN group. Calcination at 300°C followed by re-reduction of the catalysts resulted in a monotonic decrease of specific activity with increasing Sn/Pt ratio.  相似文献   

18.
Highly oriented tungsten bronze K0.4(Pb0.6Ba0.4)0.8Nb2O6 ferroelectric thin films have been prepared from metal alkoxides and metal acetate by chemical process. The formation of solid solution with potassium was found to be very effective to form the tungsten bronze phase at lower temperatures compared with (Pb0.6Ba0.4)Nb2O6. The amount of potassium in the composition of Kx(Pb0.6Ba0.4)1 – x/2Nb2O6 [0 x 0.4] is also important to crystallize in the tungsten bronze phase. K0.4(Pb0.6Ba0.4)0.8Nb2O6 films with c-axis preferred orientation were successfully synthesized on MgO(1 0 0) and Pt(1 0 0)/MgO(1 0 0) substrates above 700°C. KPBN60 thin film on Pt(1 0 0)/MgO(1 0 0) showed a remnant polarization of 20 C/cm2 and a coercive field of 140 kV/cm at –150°C.  相似文献   

19.
Polylactide (PLA) films blended with 10 wt% poly(butylene adipate-co-terephthalate) (PBAT) were prepared by using a twin screw extruder in the presence of the nucleating agent of titanium dioxide (TiO2) and the compatibilizers of toluene diisocyanate (TDI) and PLA-grafted-maleic anhydride (PLA-g-MA). The synergistic effect of the nucleation and compatibilization on the properties and crystallization behavior of the PLA/PBAT (PLB) films was explored. The results showed that the addition of TiO2 significantly enhanced the tensile strength and the impact tensile resistance of the PLB films while slightly decreased its thermal stability. In addition, the compatibilizers of TDI and PLA-g-MA in the system not only affected the crystallinity and cold crystallization process of the PLB films, but also increased the mechanical properties of them due to the improvement of the interfacial interaction between PLA and PBAT revealed by the morphological measurement. The synergistic effects of the nucleating agent and the compatibilizer afforded the blend films with increased tensile strength and impact tensile toughness, improved cold crystallization property and χ c.  相似文献   

20.
Complexes of type {cis-[Pt](μ-σ,π-CCPh)2}AgX (3a, [Pt] = (bipy′)Pt, X = FBF3; 3b, [Pt] = (bipy′)Pt, X = FPF5; 3c, [Pt] = (bipy)Pt, X = OClO3; 3d, [Pt] = (bipy′)Pt, X = BPh4; bipy′ = 4,4′-dimethyl-2,2′-bipyridine; bipy = 2,2′-bipyridine) are accessible by combining cis-[Pt](CCPh)2 (1a, [Pt] = (bipy′)Pt; 1b, [Pt] = (bipy)Pt) with equimolar amounts of [AgX] (2a, X = BF4; 2b, X = PF6; 2c, X = ClO4; 2d, X = BPh4). In 3a-3d the platinum(II) and silver(I) ions are connected by σ- and π-bonded phenyl acetylide ligands. When the molar ratio of 1 and 2 is changed to 2:1 then trimetallic [{cis-[Pt](μ-CCPh)2}2Ag]X (8a, [Pt] = (bipy)Pt, X = BF4; 8b, [Pt] = (bipy′)Pt, X = PF6; 8c, [Pt] = (bipy)Pt, X = BF4) is produced. The solid state structure of 8a was determined by single X-ray crystal structure analysis. In 8a the silver(I) ion is embedded between two parallel oriented cis-[Pt](CCPh)2 units. Within this structural arrangement the phenyl acetylides of individual [Pt](CCPh)2 entities possess a μ-bridging position between Pt(II) and Ag(I). In addition, a very weak dative Pt → Ag interaction is found (Pt-Ag 2.8965(3) Å). The respective silver carbon distances Ag-Cα (2.548(7), 2.447(7) Å) and Ag-Cβ (3.042(7), 2.799(8) Å)(PtCαCβPh) confirm this structural motif.Complexes 8a-8c isomerize in solution to form trimetallic [{cis-[Pt](μ-σ,π-CCPh)2}2Ag]X (9a, [Pt] = (bipy)Pt, X = BF4; 9b, [Pt] = (bipy′)Pt, X = PF6; 9c, [Pt] = (bipy)Pt, X = ClO4). In the latter molecules the organometallic cation [{cis-[Pt](μ-σ,π- CCPh)2}2Ag]+ is set-up by two nearly orthogonal positioned [Pt](CCPh)2 entities which are hold in close proximity by the group-11 metal ion. Within this assembly all four PhCC units are η2-coordinated to silver(I). A possible mechanism for the formation of 9 is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号