首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 446 毫秒
1.
In open quantum systems, decoherence occurs through interaction of a quantum subsystem with its environment. The computation of expectation values requires a knowledge of the quantum dynamics of operators and sampling from initial states of the density matrix describing the subsystem and bath. We consider situations where the quantum evolution can be approximated by quantum-classical Liouville dynamics and examine the circumstances under which the evolution can be reduced to surface-hopping dynamics, where the evolution consists of trajectory segments exclusively evolving on single adiabatic surfaces, with probabilistic hops between these surfaces. The justification for the reduction depends on the validity of a Markovian approximation on a bath averaged memory kernel that accounts for quantum coherence in the system. We show that such a reduction is often possible when initial sampling is from either the quantum or classical bath initial distributions. If the average is taken only over the quantum dispersion that broadens the classical distribution, then such a reduction is not always possible.  相似文献   

2.
3.
4.
5.
This work demonstrates that the quantum mechanical moments of a state described by the density matrix correspond to discrete spherical harmonic moments of the classical multipole expansion of the spatial distribution of the angular momentum vectors. For the diagonal density matrix elements, this work exploits the fact that the quantum mechanical vector coupling (Clebsch-Gordan) coefficients become increasingly accurate discrete representations of spherical harmonics as j increases. A Schwinger-type basis accounts for nonaxially symmetric angular distributions, which result in nonzero off-diagonal elements of the density matrix. The resulting discrete minimum uncertainty picture of the classical moments has a stringent equivalence with the quantum mechanical one for all j and provides an unambiguous connection for the classical and quantum moments in the large j limit. The equivalence is numerically tested for simple models, and there is a satisfying equivalence even for small j. Applications, implications, and extensions are indicated, and the relevance of this work for the interpretation of classical mechanical simulations of inelastic and reactive molecular collisions will be documented elsewhere.  相似文献   

6.
In this paper, we present simulations of the decay of quantum coherence between vibrational states of I(2) in its ground (X) electronic state embedded in a cryogenic Kr matrix. We employ a numerical method based on the semiclassical limit of the quantum Liouville equation, which allows the simulation of the evolution and decay of quantum vibrational coherence using classical trajectories and ensemble averaging. The vibrational level-dependent interaction of the I(2)(X) oscillator with the rare-gas environment is modeled using a recently developed method for constructing state-dependent many-body potentials for quantum vibrations in a many-body classical environment [J. M. Riga, E. Fredj, and C. C. Martens, J. Chem. Phys. 122, 174107 (2005)]. The vibrational dephasing rates gamma(0n) for coherences prepared between the ground vibrational state mid R:0 and excited vibrational state mid R:n are calculated as a function of n and lattice temperature T. Excellent agreement with recent experiments performed by Karavitis et al. [Phys. Chem. Chem. Phys. 7, 791 (2005)] is obtained.  相似文献   

7.
In this paper, a formalism for studying the dynamics of quantum systems coupled to classical spin environments is reviewed. The theory is based on generalized antisymmetric brackets and naturally predicts open-path off-diagonal geometric phases in the evolution of the density matrix. It is shown that such geometric phases must also be considered in the quantum–classical Liouville equation for a classical bath with canonical phase space coordinates; this occurs whenever the adiabatics basis is complex (as in the case of a magnetic field coupled to the quantum subsystem). When the quantum subsystem is weakly coupled to the spin environment, non-adiabatic transitions can be neglected and one can construct an effective non-Markovian computer simulation scheme for open quantum system dynamics in classical spin environments. In order to tackle this case, integration algorithms based on the symmetric Trotter factorization of the classical-like spin propagator are derived. Such algorithms are applied to a model comprising a quantum two-level system coupled to a single classical spin in an external magnetic field. Starting from an excited state, the population difference and the coherences of this two-state model are simulated in time while the dynamics of the classical spin is monitored in detail. It is the author’s opinion that the numerical evidence provided in this paper is a first step toward developing the simulation of quantum dynamics in classical spin environments into an effective tool. In turn, the ability to simulate such a dynamics can have a positive impact on various fields, among which, for example, nanoscience.  相似文献   

8.
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.  相似文献   

9.
To investigate the role of quantum effects in vibrational spectroscopies, we have carried out numerically exact calculations of linear and nonlinear response functions for an anharmonic potential system nonlinearly coupled to a harmonic oscillator bath. Although one cannot carry out the quantum calculations of the response functions with full molecular dynamics (MD) simulations for a realistic system which consists of many molecules, it is possible to grasp the essence of the quantum effects on the vibrational spectra by employing a model Hamiltonian that describes an intra- or intermolecular vibrational motion in a condensed phase. The present model fully includes vibrational relaxation, while the stochastic model often used to simulate infrared spectra does not. We have employed the reduced quantum hierarchy equations of motion approach in the Wigner space representation to deal with nonperturbative, non-Markovian, and nonsecular system-bath interactions. Taking the classical limit of the hierarchy equations of motion, we have obtained the classical equations of motion that describe the classical dynamics under the same physical conditions as in the quantum case. By comparing the classical and quantum mechanically calculated linear and multidimensional spectra, we found that the profiles of spectra for a fast modulation case were similar, but different for a slow modulation case. In both the classical and quantum cases, we identified the resonant oscillation peak in the spectra, but the quantum peak shifted to the red compared with the classical one if the potential is anharmonic. The prominent quantum effect is the 1-2 transition peak, which appears only in the quantum mechanically calculated spectra as a result of anharmonicity in the potential or nonlinearity of the system-bath coupling. While the contribution of the 1-2 transition is negligible in the fast modulation case, it becomes important in the slow modulation case as long as the amplitude of the frequency fluctuation is small. Thus, we observed a distinct difference between the classical and quantum mechanically calculated multidimensional spectra in the slow modulation case where spectral diffusion plays a role. This fact indicates that one may not reproduce the experimentally obtained multidimensional spectrum for high-frequency vibrational modes based on classical molecular dynamics simulations if the modulation that arises from surrounding molecules is weak and slow. A practical way to overcome the difference between the classical and quantum simulations was discussed.  相似文献   

10.
A theoretical model to investigate chemical processes in solution is described. It is based on the use of a coupled density functional/molecular mechanics Hamiltonian. The most interesting feature of the method is that it allows a detailed study of the solute's electronic distribution and of its fluctuations. We present the results for isothermal-isobaric constant-NPT Monte Carlo simulation of a water molecule in liquid water. The quantum subsystem is described using a double-zeta quality basis set with polarization orbitals and nonlocal exchange-correlation corrections. The classical system is constituted by 128 classical TIP3P or Simple Point Charge (SPC) water molecules. The atom-atom radial distribution functions present a good agreement with the experimental curves. Differences with respect to the classical simulation are discussed. The instantaneous and the averaged polarization of the quantum molecule are also analyzed. © 1996 by John Wiley & Sons, Inc.  相似文献   

11.
A new method is presented for extracting approximate quantum mechanical state-to-state transition probabilities from the results of classical trajectory calculations. The method recognizes quantum discreteness by dealing with the quantum mechanical probability matrix, but all dynamical quantities are evaluated by classical mechanics. It is illustrated by application to the linear atom-diatom collision (vibrational excitation); it is capable of treating both classically allowed and classically forbidden processes.  相似文献   

12.
A mixed quantum-classical formulation is developed for a quantum subsystem in strong interaction with an N-particle environment, to be treated as classical in the framework of a hydrodynamic representation. Starting from the quantum Liouville equation for the N-particle distribution and the corresponding reduced single-particle distribution, exact quantum hydrodynamic equations are obtained for the momentum moments of the single-particle distribution coupled to a discretized quantum subsystem. The quantum-classical limit is subsequently taken and the resulting hierarchy of equations is further approximated by various closure schemes. These include, in particular, (i) a Grad-Hermite-type closure, (ii) a Gaussian closure at the level of a quantum-classical local Maxwellian distribution, and (iii) a dynamical density functional theory approximation by which the hydrodynamic pressure term is replaced by a free energy functional derivative. The latter limit yields a mixed quantum-classical formulation which has previously been introduced by I. Burghardt and B. Bagchi, Chem. Phys. 134, 343 (2006).  相似文献   

13.
Methods for simulating the dynamics of composite systems, where part of the system is treated quantum mechanically and its environment is treated classically, are discussed. Such quantum–classical systems arise in many physical contexts where certain degrees of freedom have an essential quantum character while the other degrees of freedom to which they are coupled may be treated classically to a good approximation. The dynamics of these composite systems are governed by a quantum–classical Liouville equation for either the density matrix or the dynamical variables which are operators in the Hilbert space of the quantum subsystem and functions of the classical phase space variables of the classical environment. Solutions of the evolution equations may be formulated in terms of surface-hopping dynamics involving ensembles of trajectory segments interspersed with quantum transitions. The surface-hopping schemes incorporate quantum coherence and account for energy exchanges between the quantum and classical degrees of freedom. Various simulation algorithms are discussed and illustrated with calculations on simple spin-boson models but the methods described here are applicable to realistic many-body environments.  相似文献   

14.
In this contribution quantum/classical surface hopping methodology is applied to vibrational energy relaxation of a quantum oscillator in a classical heat bath. The model of a linearly damped (harmonic) oscillator is chosen which can be mapped onto the Brownian motion (Caldeira-Leggett) Hamiltonian. In the simulations Tully's fewest switches surface hopping scheme is adopted with inclusion of dephasing in the adiabatic basis using a simple decoherence algorithm. The results are compared to the predictions of a Redfield-type quantum master equation modeling using the classical heat bath force correlation function as input. Thereby a link is established between both types of quantum/classical approaches. Viewed from the latter perspective, surface hopping with dephasing may be interpreted as "on-the-fly" stochastic realization of a quantum/classical Pauli master equation.  相似文献   

15.
Averaging of the chemical shift over the molecular motion improves the simulated data and provides additional information about the temperature dependence and system dynamics. However, crystal modeling is difficult due to the limited precision of the plane‐wave density functional theory (DFT) methods and approximate vibrational schemes. On the glycine example, we investigate how the averaging can be achieved within the periodic boundary conditions at the DFT level. The nuclear motion is modeled with the vibrational configuration interaction, with other simplified quantum anharmonic schemes, and the classical Born–Oppenheimer molecular dynamics (BOMD). The results confirm a large vibrational contribution to the isotropic shielding values. Both the first and second derivatives of the shielding were found important for the quantum averaging. The first derivatives influence the shielding mostly due to the anharmonic character of the CH and NH stretching modes, whereas second derivatives produce most vibrational corrections associated with the lower‐frequency vibrational modes. Temperature excitations of the lowest‐frequency vibrational states and the expansion of the crystal cell both determine the temperature dependence of nuclear magnetic resonance parameters. The vibrational quantum approach as well as classical BOMD schemes provided temperature dependencies of the chemical shifts that are consistent with the previous experimental data. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
In this article, we describe coupled coherent states (CCS) simulations of vibrational predissociation of weakly bounded complexes. The CCS method is implemented in the Cartesian frame in a manner that is similar to classical molecular dynamics. The calculated lifetimes of the vibrationally excited Ne-Br(2)(ν) complexes agree with experiment and previous calculations. Although the CCS method is, in principle, a fully quantum approach, in practice it typically becomes a semiclassical technique at long times. This is especially true following dissociation events. Consequently, it is very difficult to converge the quantum calculations of the final Br(2) vibrational distributions after predissociation and of the autocorrelation functions. However, the main advantage of the method is that it can be applied with relative ease to determine the lifetimes of larger complexes and, in order to demonstrate this, preliminary results for tetra- and penta-atomic clusters are reported.  相似文献   

17.
The calculation of the vibrational Raman spectrum of enzyme-bound beta-lactamase inhibitors may be of help to understand the mechanisms responsible for bacterial drug resistance. Here, we present a study of the solvation structure and the vibrational properties of clavulanate, an important beta-lactamase inhibitor, in aqueous solution as obtained from full quantum and hybrid empirical/quantum molecular dynamics simulations at ambient conditions. The analysis of the vibrational density of states indicates that hybrid empirical/quantum mechanical simulations are able to properly describe the vibrational levels of clavulanate in solution. In addition, we propose a computationally efficient protocol to calculate the vibrational Raman effect for large solute molecules in water, which is able to faithfully reproduce the experimentally recorded clavulanate Raman spectrum and discloses the possibility to employ hybrid simulations to assign the experimental Raman spectra of inhibitors bound to beta-lactamases.  相似文献   

18.
A method based on a lattice summation technique for treating long-range electrostatic interactions in hybrid quantum mechanics/molecular mechanics simulations is presented in this article. The quantum subsystem is studied at the semiempirical level, whereas the solvent is described by a two-body potential of molecular mechanics. Molecular dynamics simulations of a (quantum) chloride ion in (classical) water have been performed to test this technique. It is observed that the application of the lattice summations to solvent-solvent interactions as well as on solute-solvent ones has a significant effect on solvation energy and diffusion coefficient. Moreover, two schemes for the computation of the long-range contribution to the electrostatic interaction energy are investigated. The first one replaces the exact charge distribution of the quantum solute by a Mulliken charge distribution. The long-range electrostatic interactions are then calculated for this charge distribution that interacts with the solvent molecule charges. The second one is more accurate and involves a modified Fock operator containing long-range electron-charge interactions. It is shown here that both schemes lead to similar results, the method using Mulliken charges for the evaluation of long-range interactions being, however, much more computationally efficient.  相似文献   

19.
An ab initio centroid molecular dynamics (CMD) method is developed by combining the CMD method with the ab initio molecular orbital method. The ab initio CMD method is applied to vibrational dynamics of diatomic molecules, H2 and HF. For the H2 molecule, the temperature dependence of the peak frequency of the vibrational spectral density is investigated. The results are compared with those obtained by the ab initio classical molecular dynamics method and exact quantum mechanical treatment. It is shown that the vibrational frequency obtained from the ab initio CMD approaches the exact first excitation frequency as the temperature lowers. For the HF molecule, the position autocorrelation function is also analyzed in detail. The present CMD method is shown to well reproduce the exact quantum result for the information on the vibrational properties of the system.  相似文献   

20.
Fourier transform infrared spectroscopy is a popular method for the experimental investigation of hydrogen-bonded aggregates, but linking spectral information to microscopic information on aggregate size distribution and aggregate architecture is an arduous task. Static electronic structure calculations with an implicit solvent model, Car-Parrinello molecular dynamics (CPMD) using the Becke-Lee-Yang-Parr (BLYP) exchange and correlation energy functionals and classical molecular dynamics simulations for the all-atom version of the optimized parameters for liquid simulations (OPLS-AA) force field were carried out for an ensemble of 1-hexanol aggregates solvated in n-hexane. The initial configurations for these calculations were size-selected from a distribution of aggregates obtained from a large-scale Monte Carlo simulation. The vibrational spectra computed from the static electronic structure calculations for monomers and dimers and from the CPMD simulations for aggregates up to pentamers demonstrate the extent of the contribution of dangling or nondonating hydroxyl groups found in linear and branched aggregates to the "monomeric" peak. Furthermore, the computed spectra show that there is no simple relationship between peak shift and aggregate size nor architecture, but the effect of hydrogen-bond cooperativity is shown to differentiate polymer-like (cooperative) and dimer-like (noncooperative) hydrogen bonds in the vibrational spectrum. In contrast to the static electronic structure calculations and the CPMD simulations, the classical molecular dynamics simulations greatly underestimate the vibrational peak shift due to hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号