首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH(3)OO(-), CD(3)OO(-), and CH(3)CH(2)OO(-)) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH(3)OO, X(2)A' '] = 1.161 +/- 0.005 eV, EA[CD(3)OO, X(2)A' '] = 1.154 +/- 0.004 eV, and EA[CH(3)CH(2)OO, X(2)A' '] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: Delta E(X(2)A' '-A (2)A')[CH(3)OO] = 0.914 +/- 0.005 eV, Delta E(X(2)A' '-A (2)A')[CD(3)OO] = 0.913 +/- 0.004 eV, and Delta E(X(2)A' '-A (2)A')[CH(3)CH(2)OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube (FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta(acid)G(298)(CH(3)OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta(acid)G(298)(CD(3)OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta(acid)G(298)(CH(3)CH(2)OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta(acid)H(298)(CH(3)OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta(acid)H(298)(CD(3)OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta(acid)H(298)(CH(3)CH(2)OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH(298)(CH(3)OO-H) = 87.8 +/- 1.0 kcal mol(-1), DH(298)(CD(3)OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH(298)(CH(3)CH(2)OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH(3)OO and CH(3)CH(2)OO. Using experimental bond enthalpies, DH(298)(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta(f)H(298)[CH(3)OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta(f)H(298)[CH(3)CH(2)OO] = -6.8 +/- 2.3 kcal mol(-1).  相似文献   

2.
The photoionization of 1-alkenylperoxy radicals, which are peroxy radicals where the OO moiety is bonded to an sp2-hybridized carbon, is studied by experimental and computational methods and compared to the similar alkylperoxy systems. Quantum chemical calculations are presented for the ionization energy and cation stability of several alkenylperoxy radicals. Experimental measurements of 1-cyclopentenylperoxy (1-c-C5H7OO) and propargylperoxy (CH2=C=CHOO) photoionization are presented as examples. These radicals are produced by reaction of an excess of O2 with pulsed-photolytically produced alkenyl radicals. The kinetic behavior of the products confirms the formation of the alkenylperoxy radicals. Electronic structure calculations are employed to give structural parameters and energetics that are used in a Franck-Condon (FC) spectral simulation of the photoionization efficiency (PIE) curves. The calculations also serve to identify the isomeric species probed by the experiment. Adiabatic ionization energies (AIEs) of 1-c-C5H7OO (8.70 +/- 0.05 eV) and CH2=C=CHOO (9.32 +/- 0.05 eV) are derived from fits to the experimental PIE curves. From the fitted FC simulation superimposed on the experimental PIE curves, the splitting between the ground state singlet and excited triplet cation electronic states is also derived for 1-c-C5H7OO (0.76 +/- 0.05 eV) and CH2=C=CHOO (0.80 +/- 0.15 eV). The combination of the AIE(CH2=C=CHOO) and the propargyl heat of formation provides Delta f H(0)(o) (CH2=C=CHOO+) of (1162 +/- 8) kJ mol-1. From Delta f H(0)(o) (CH2=C=CHOO+) and Delta f H (0)(o) (C3H3+) it is also possible to extract the bond energy D(0)(o)(C3H3+-OO) of 19 kJ mol-1 (0.20 eV). Finally, from consideration of the relevant molecular orbitals, the ionization behavior of alkyl- and alkenylperoxy radicals can be generalized with a simple rule: Alkylperoxy radicals dissociatively ionize, with the exception of methylperoxy, whereas alkenylperoxy radicals have stable singlet ground electronic state cations.  相似文献   

3.
The peroxy radicals CF3OO and FC(O)OO are prepared in high yields by vacuum flash pyrolysis of ROONO2 or ROOOR (R=CF3, FC(O)), highly diluted in inert gases, and subsequent isolation in inert-gas matrices by quenching the product mixtures at low temperatures. The IR spectrum of FC(O)OO was observed for the first time and eight fundamentals as well as several combinations were measured and assigned for both cis and trans rotamers of FC(O)OO. Discrepancies in an earlier assignment of the fundamentals of CF3OO have been eliminated and its IR spectrum is reported fully. The matrix UV spectra of both peroxy radicals (X2A"--> 2(2)A" transition) are in agreement with the gas-phase spectra; however, there are differences in the absorption cross-sections, for which possible reasons are discussed. The X2A"--> 1(2)A' transitions in the near IR region are too weak to be detected with our instrumentation.  相似文献   

4.
The photoionization of alkylperoxy radicals has been investigated using a newly developed experimental apparatus that combines the tunability of the vacuum ultraviolet radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory with time-resolved mass spectrometry. Methylperoxy (CH(3)OO) and ethylperoxy (C(2)H(5)OO) radicals are produced by the reaction of pulsed, photolytically produced alkyl radicals with molecular oxygen, and the mass spectrum of the reacting mixture is monitored in time by using synchrotron-photoionization with a double-focusing mass spectrometer. The kinetics of product formation is used to confirm the origins and assignments of ionized species. The photoionization efficiency curve for CH(3)OO has been measured, and an adiabatic ionization energy of (10.33 +/- 0.05) eV was determined with the aid of Franck-Condon spectral simulations, including ionization to the lowest triplet and singlet cation states. Using the appearance energy of CH(3)(+) from CH(3)OO, an enthalpy of formation for CH(3)OO of Delta(f) (CH(3)OO) = (22.4 +/- 5) kJ mol(-1) is derived. The enthalpy of formation of CH(3)OO(+) is derived as Delta(f) = (1019 +/- 7) kJ mol(-1) and the CH(3)(+)-OO bond energy as (CH(3)(+) - O(2)) = (80 +/- 7) kJ mol(-1). The C(2)H(5)OO(+) signal is not detectable; however, the time profile of the ethyl cation signal suggests its formation from dissociative ionization of C(2)H(5)OO. Electronic structure calculations suggest that hyperconjugation reduces the stability of the ethylperoxy cation, making the C(2)H(5)OO(+) ground state only slightly bound with respect to the ground-state products, C(2)H(5)(+) and O(2). The value of the measured appearance energy of C(2)H(5)(+) is consistent with dissociative ionization of C(2)H(5)OO via the Franck-Condon favored ionization to the ? (1)A' state of C(2)H(5)OO(+).  相似文献   

5.
The photodissociation dynamics of the ethoxy radical (CH3CH2O) have been studied at energies from 5.17 to 5.96 eV using photofragment coincidence imaging. The upper state of the electronic transition excited at these energies is assigned to the C2A'state on the basis of electronic structure calculations. Fragment mass distributions show two photodissociation channels, OH + C2H4 and CH3 + CH2O. The presence of an additional photodissociation channel, identified as D + C2D4O, is revealed in time-of-flight distributions from the photodissociation of CD3CD2O. The product branching ratios and fragment translational energy distributions for all of the observed mass channels are nonstatistical. Moreover, the significant yield of OH + C2H4 product suggests that the mechanism for this channel involves isomerization on the excited-state surface. Photodissociation at a much lower yield is seen following excitation at 3.91 eV, corresponding to a vibronic band of the B2A' <-- X2A' transition.  相似文献   

6.
The peroxyacetyl radical (PA, CH3C(O)OO) is generated by flash pyrolysis of peroxyacetyl nitrate (PAN, CH3C(O)OONO2) in a supersonic jet. The 0(0)(0) A2A' <-- X2A' electronic transition for PA, at ca. 5582 cm(-1), is detected in a supersonically cooled sample by time-of-flight mass spectroscopy in the CH3CO mass channel. Rotational envelope simulation results find that the rotational temperature for PA in its ground electronic and vibrational state is ca. 55 K. At ca. 330 degrees C, the thermal decomposition of PAN by flash pyrolysis in a heated nozzle with supersonic expansion is mainly by formation of PA and NO2. The maximum yield of PA is obtained at this temperature. At higher temperatures (300-550 degrees C), an intense signal in the CH2CO+ mass channel is observed, generated by the decomposition of PA.  相似文献   

7.
We have recorded several rovibronic bands of CH3OO and CD3OO in their A<--X transitions in the range of 1.18-1.40 microm with the cavity ringdown technique. While the electronic origins for these species have been reported previously, many newly observed rovibronic bands are described here. The experimental vibrational frequencies (given as nu in the unit cm(-1) in this paper) for the COO bending (nu8) and COO symmetric stretching (nu7) modes in the A state are 378 and 887 cm(-1) for CH3OO, and 348 and 824 cm(-1) for CD3OO, respectively. In addition, two other vibrational frequencies were observed for the A state of CD3OO, namely, nu5 (954 cm(-1)) and nu6 (971 cm(-1)). These experimental vibrational frequencies for the A state of both CH3OO and CD3OO are in good agreement with predictions from quantum-chemical calculations at the UB3LYP/aug-cc-pVTZ level. The enhanced activity of the nu5 vibrational mode in CD3OO is rationalized by mode mixing with the nu7 mode, as supported by calculations of multidimensional Franck-Condon factors. In addition, many hot bands involving the methyl torsional mode (nu12) are observed for both normal and deuterated methyl peroxy. These bands include the "typical" sequence transitions and some "atypical" ones due to the nature of the eigenvalues and eigenfunctions which are a consequence of the low, but very different, torsional barriers in the X and A states. In addition, the 12(2)2 band in CH3OO and the 12(3)3 band in CD3OO show quite different structures than the origin bands, an effect which results from tunneling splittings comparable to the rotational contour.  相似文献   

8.
The photodissociation of DNCN following excitation of the C 2A"<--X 2A" electronic transition was studied using fast beam photofragment translational spectroscopy. Analysis of the time-of-flight distributions reveals a photodissociation channel leading to D+NCN competitive with the previously observed CD+N2 product channel. The translational energy distributions describing the D+NCN channel are peaked at low energy, consistent with internal conversion to the ground state followed by statistical decay and the absence of an exit barrier. The results suggest a relatively facile pathway for the reaction CH+N2-->H+NCN that proceeds through the HNCN intermediate and support a recently proposed mechanism for prompt NO production in flames.  相似文献   

9.
Dimethyl sulfoxide (DMSO) is the major sulfur-containing constituent of the Marine Boundary Layer. It is a significant source of H2SO4 aerosol/particles and methane sulfonic acid via atmospheric oxidation processes, where the mechanism is not established. In this study, several new, low-temperature pathways are revealed in the oxidation of DMSO using CBS-QB3 and G3MP2 multilevel and B3LYP hybrid density functional quantum chemical methods. Unlike analogous hydrocarbon peroxy radicals the chemically activated DMSO peroxy radical, [CH3S(=O)CH2OO*]*, predominantly undergoes simple dissociation to a methylsulfinyl radical CH3S*(=O) and a Criegee intermediate, CH2OO, with the barrier to dissociation 11.3 kcal mol(-1) below the energy of the CH3S(=O)CH2* + O2 reactants. The well depth for addition of O2 to the CH3S(=O)CH2 precursor radical is 29.6 kcal mol(-1) at the CBS-QB3 level of theory. We believe that this reaction may serve an important role in atmospheric photochemical and irradiated biological (oxygen-rich) media where formation of initial radicals is facilitated even at lower temperatures. The Criegee intermediate (carbonyl oxide, peroxymethylene) and sulfinyl radical can further decompose, resulting in additional chain branching. A second reaction channel important for oxidation processes includes formation (via intramolecular H atom transfer) and further decomposition of hydroperoxide methylsulfoxide radical, *CH2S(=O)CH2OOH over a low barrier of activation. The initial H-transfer reaction is similar and common in analogous hydrocarbon radical + O2 reactions; but the subsequent very low (3-6 kcal mol(-1)) barrier (14 kcal mol(-1) below the initial reagents) to beta-scission products is not common in HC systems. The low energy reaction of the hydroperoxide radical is a beta-scission elimination of *CH2S(=O)CH2OOH into the CH2=S=O + CH2O + *OH product set. This beta-scission barrier is low, because of the delocalization of the *CH2 radical center through the -S(=O) group, to the -CH2OOH fragment in the transition state structure. The hydroperoxide methylsulfoxide radical can also decompose via a second reaction channel of intramolecular OH migration, yielding formaldehyde and a sulfur-centered hydroxymethylsulfinyl radical HOCH2S*(=O). The barrier of activation relative to initial reagents is 4.2 kcal mol(-1). Heats of formation for DMSO, DMSO carbon-centered radical and Criegee intermediate are evaluated at 298 K as -35.97 +/- 0.05, 13.0 +/- 0.2 and 25.3 +/- 0.7 kcal mol(-1) respectively using isodesmic reaction analysis. The [CH3S*(=O) + CH2OO] product set is shown to form a van der Waals complex that results in O-atom transfer reaction and the formation of new products CH3SO2* radical and CH2O. Proper orientation of the Criegee intermediate and methylsulfinyl radical, as a pre-stabilized pre-reaction complex, assist the process. The DMSO radical reaction is also compared to that of acetonyl radical.  相似文献   

10.
Helium nanodroplet isolation and infrared laser spectroscopy are used to investigate the CH(3) + O(2) reaction. Helium nanodroplets are doped with methyl radicals that are generated in an effusive pyrolysis source. Downstream from the introduction of CH(3), the droplets are doped with O(2) from a gas pick-up cell. The CH(3) + O(2) reaction therefore occurs between sequentially picked-up and presumably cold CH(3) and O(2) reactants. The reaction is known to lead barrierlessly to the methyl peroxy radical, CH(3)OO. The ~30 kcal/mol bond energy is dissipated by helium atom evaporation, and the infrared spectrum in the CH stretch region reveals a large abundance of droplets containing the cold, helium solvated CH(3)OO radical. The CH(3)OO infrared spectrum is assigned on the basis of comparisons to high-level ab initio calculations and to the gas phase band origins and rotational constants.  相似文献   

11.
The lowest-lying triplet and singlet potential energy surfaces for the O(3P) + CH2=C=CH2 reaction were theoretically characterized using the complete basis set model chemistry, CBS-QB3. The primary product distributions for the multistate multiwell reactions on the individual surfaces were then determined by RRKM statistical rate theory and weak-collision master equation analysis using the exact stochastic simulation method. The results predict that the electrophilic O-addition pathways on the central and terminal carbon atom are dominant up to combustion temperatures. Major predicted end-products for the addition routes include CO + C2H4, 3CH2 + H2CCO, and CH2=C*-CHO + H*, in agreement with experimental evidence. CO + C2H4 are mainly generated from the lowest-lying singlet surface after an intersystem crossing process from the initial triplet surface. Efficient H-abstraction pathways are newly identified and occur on two different electronic state surfaces, 3A' and 3A', resulting in OH + propargyl radicals; they are predicted to play an important role at higher temperatures in hydrocarbon combustion chemistry and flames, with estimated contributions of ca. 35% at 2000 K. The overall thermal rate coefficient k(O + C3H4) at 200-1000 K was computed using multistate transition state theory: k(T) = 1.60 x 10(-17) x T (2.05) x exp(-90 K/T) cm3 molecule(-1) s(-1), in good agreement with experimental data available for the 300-600 K range.  相似文献   

12.
The CH3(X2A1)+SH(X2Pi) channel of the photodissociation of CH3SH has been investigated at several wavelengths in the first 1 1A"<--X 1A' and second 2 1A"<--X1A' absorption bands by means of velocity map imaging of the CH3 fragment. A fast highly anisotropic (beta=-1+/-0.1) CH3(X2A1) signal has been observed in the images at all the photolysis wavelengths studied, which is consistent with a direct dissociation process from an electronically excited state by cleavage of the C-S bond in the parent molecule. From the analysis of the CH3 images, vibrational populations of the SH(X2Pi) counterfragment have been extracted. In the second absorption band, the SH fragment is formed with an inverted vibrational distribution as a consequence of the forces acting in the crossing from the bound 2 1A" second excited state to the unbound 1 1A" first excited state. The internal energy of the SH radical increases as the photolysis wavelength decreases. In the case of photodissociation via the first excited state, the direct production of CH3 leaves the SH counterfragment with little internal excitation. Moreover, at the longer photolysis wavelengths corresponding to excitation to the 1 1A" state, a slower anisotropic CH3 channel has been observed (beta=-0.8+/-0.1) consistent with a two step photodissociation process, where the first step corresponds to the production of CH3S(X2E) radicals via cleavage of the S-H bond in CH3SH, followed by photodissociation of the nascent CH3S radicals yielding CH3(X2A1)+S(X3P0,1,2).  相似文献   

13.
Potential-energy surface of the CH3CO + O2 reaction has been calculated by ab initio quantum chemistry methods. The geometries were optimized using the second-order Moller-Plesset theory (MP2) with the 6-311G(d,p) basis set and the coupled-cluster theory with single and double excitations (CCSD) with the correlation consistent polarized valence double zeta (cc-pVDZ) basis set. The relative energies were calculated using the Gaussian-3 second-order Moller-Plesset theory with the CCSD/cc-pVDZ geometries. Multireference self-consistent-field and MP2 methods were also employed using the 6-311G(d,p) and 6-311++G(3df,2p) basis sets. Both addition/elimination and direct abstraction mechanisms have been investigated. It was revealed that acetylperoxy radical [CH3C(O)OO] is the initial adduct and the formation of OH and alpha-lactone [CH2CO2(1A')] is the only energetically accessible decomposition channel. The other channels, e.g., abstraction, HO2 + CH2CO, O + CH3CO2, CO + CH3O2, and CO2 + CH3O, are negligible. Multichannel Rice-Ramsperger-Kassel-Marcus theory and transition state theory (E-resolved) were employed to calculate the overall and individual rate coefficients and the temperature and pressure dependences. Fairly good agreement between theory and experiments has been obtained without any adjustable parameters. It was concluded that at pressures below 3 Torr, OH and CH2CO2(1A') are the major nascent products of the oxidation of acetyl radicals, although CH2CO2(1A') might either undergo unimolecular decomposition to form the final products of CH2O + CO or react with OH and Cl to generate H2O and HCl. The acetylperoxy radicals formed by collisional stabilization are the major products at the elevated pressures. In atmosphere, the yield of acetylperoxy is nearly unity and the contribution of OH is only marginal.  相似文献   

14.
Using photofragment translational spectroscopy and tunable vacuum-ultraviolet ionization, we measured the time-of-flight spectra of fragments upon photodissociation of vinyl fluoride (CH2CHF) at 157 and 193 nm. Four primary dissociation pathways--elimination of atomic F, atomic H, molecular HF, and molecular H2--are identified at 157 nm. Dissociation to C2H3 + F is first observed in the present work. Decomposition of internally hot C2H3 and C2H2F occurs spontaneously. The barrier heights of CH2CH --> CHCH + H and cis-CHCHF --> CHCH + F are evaluated to be 40+/-2 and 44+/-2 kcal mol(-1), respectively. The photoionization yield spectra indicate that the C2H3 and C2H2F radicals have ionization energies of 8.4+/-0.1 and 8.8+/-0.1 eV, respectively. Universal detection of photoproducts allowed us to determine the total branching ratios, distributions of kinetic energy, average kinetic energies, and fractions of translational energy release for all dissociation pathways of vinyl fluoride. In contrast, on optical excitation at 193 nm the C2H2 + HF channel dominates whereas the C2H3 + F channel is inactive. This reaction C2H3F --> C2H2 + HF occurs on the ground surface of potential energy after excitation at both wavelengths of 193 and 157 nm, indicating that internal conversion from the photoexcited state to the electronic ground state of vinyl fluoride is efficient. We computed the electronic energies of products and the ionization energies of fluorovinyl radicals.  相似文献   

15.
IR+UV double resonant ion-dip and ion-enhancement spectroscopies are employed to study the nu3 asymmetric CH stretch vibration fundamental of CH3 in the ground and 3p(z) Rydberg electronic states. CH3 radical is synthesized in the supersonic jet expansion by flash pyrolysis of azomethane (CH3NNCH3) prior to the expansion. The Q band of the 3(1) (1) 3p(z)<--X transition of CH3, not detected by conventional UV resonantly enhanced multiphoton ionization (REMPI) spectroscopy, is determined to lie at 59,898 cm(-1) using IR+UV REMPI spectroscopy. Energy of the asymmetric CH stretch of CH3 in the 3p(z) Rydberg state, nu3(3p(z)), is 3087 cm(-1), redshifted by approximately 74 cm(-1) with respect to ground state nu3(X).  相似文献   

16.
Potential energy surface (PES) intersection seams of two or more electronic states from the 1 1A', 2 1A', 3 1A', 1 1A", and 2 1A" states in the C(1D)H2 reactive system are investigated using the internally contracted multireference configuration interaction method and the aug-cc-pVQZ basis set. Intersection seams with energies less than 20 kcal/mol relative to the C(1D) + H2 asymptote are searched systematically, and finally several seam lines (at the linear H-C-H, linear C-H-H, and C(2v), geometries, respectively) and a seam surface (at Cs geometries) are discovered and determined. The minimum energy crossing points on these seams are reported and the influences of the PES intersections, in particular, conical intersections, on the CH2 spectroscopy and the C(1D) + H2 reaction dynamics are discussed. In addition, geometries and energies of the 1 1A2 and 1 1B2 states of methylene biradical CH2 are reported in detail for the first time.  相似文献   

17.
A relative rate experiment is carried out for six isotopologues of methanol and their reactions with OH and Cl radicals. The reaction rates of CH2DOH, CHD2OH, CD3OH, (13)CH3OH, and CH3(18)OH with Cl and OH radicals are measured by long-path FTIR spectroscopy relative to CH3OH at 298 +/- 2 K and 1013 +/- 10 mbar. The OH source in the reaction chamber is photolysis of ozone to produce O((1)D) in the presence of a large excess of molecular hydrogen: O((1)D) + H2 --> OH + H. Cl is produced by the photolysis of Cl2. The FTIR spectra are fitted using a nonlinear least-squares spectral fitting method with measured high-resolution infrared spectra as references. The relative reaction rates defined as alpha = k(light)/k(heavy) are determined to be: k(OH + CH3OH)/k(OH + (13)CH3OH) = 1.031 +/- 0.020, k(OH + CH3OH)/k(OH + CH3(18)OH) = 1.017 +/- 0.012, k(OH + CH3OH)/k(OH + CH2DOH) = 1.119 +/- 0.045, k(OH + CH3OH)/k(OH + CHD2OH) = 1.326 +/- 0.021 and k(OH + CH3OH)/k(OH + CD3OH) = 2.566 +/- 0.042, k(Cl + CH3OH)/k(Cl + (13)CH3OH) = 1.055 +/- 0.016, k(Cl + CH3OH)/k(Cl + CH3(18)OH) = 1.025 +/- 0.022, k(Cl + CH3OH)/k(Cl + CH2DOH) = 1.162 +/- 0.022 and k(Cl + CH3OH)/k(Cl + CHD2OH) = 1.536 +/- 0.060, and k(Cl + CH3OH)/k(Cl + CD3OH) = 3.011 +/- 0.059. The errors represent 2sigma from the statistical analyses and do not include possible systematic errors. Ground-state potential energy hypersurfaces of the reactions were investigated in quantum chemistry calculations at the CCSD(T) level of theory with an extrapolated basis set. The (2)H, (13)C, and (18)O kinetic isotope effects of the OH and Cl reactions with CH3OH were further investigated using canonical variational transition state theory with small curvature tunneling and compared to experimental measurements as well as to those observed in CH4 and several other substituted methane species.  相似文献   

18.
The thermal decomposition of peroxy acetyl nitrate (PAN) is investigated by low pressure flash thermolysis of PAN highly diluted in noble gases and subsequent isolation of the products in noble gas matrices at low temperatures and by density functional computations. The IR spectroscopically observed formation of CH3C(O)OO and H2CCO (ketene) besides NO2, CO2, and HOO implies a unimolecular decay pathway for the thermal decomposition of PAN. The major decomposition reaction of PAN is bond fission of the O-N single bond yielding the peroxy radical. The O-O bond fission pathway is a minor route. In the latter case the primary reaction products undergo secondary reactions whose products are spectroscopically identified. No evidence for rearrangement processes as the formation of methyl nitrate is observed. A detailed mapping of the reaction pathways for primary and secondary reactions using quantum chemical calculations is in good agreement with the experiment and predicts homolytic O-N and O-O bond fissions within the PAN molecule as the lowest energetic primary processes. In addition, the first IR spectroscopic characterization of two rotameric forms for the radical CH3C(O)OO is given.  相似文献   

19.
CH_2CH(~2A')自由基与臭氧反应机理的理论研究   总被引:3,自引:1,他引:3  
李来才  田安民  徐明厚 《化学学报》2003,61(8):1256-1260
用量子化学MP2(full)方法,在6-311+ +G~(**)基组水平上研究了CH_2CH (~2A~')自由基与臭氧反应的机理,全参数优化了反应过程中反应物、中间体、过 渡态和产物的几何构型,在QCISD(T,full)/6-311+ +G~(**)水平上计算了它们的 能量,并对它们进行了振动分析,以确定中间体和过渡态的真实性,研究结果表明 :CH_2CH(~2A~')自由基与臭氧反应有两条可行的反应通道,分别为:CH_2CH (~2A~')+O_3→TS1→M1→TS2→O_2+OCH_2CH→TS4+O_2→O_2(~3∑_g)+CH_2CHO (~2A~")和CH_2CH(~2A~')+O_3→M2→TS3→O_2(~3∑_g)+CHO(~2A~"),后一个反 应通道较容易发生,而且反应活化能小(2.97kJ/mol),说明CH_2CH(~2A~')自由 基与臭氧之间的反应活性很强。  相似文献   

20.
An important chemical sink for organic peroxy radicals (RO(2)) in the troposphere is reaction with hydroperoxy radicals (HO(2)). Although this reaction is typically assumed to form hydroperoxides as the major products (R1a), acetyl peroxy radicals and acetonyl peroxy radicals have been shown to undergo other reactions (R1b) and (R1c) with substantial branching ratios: RO(2) + HO(2) → ROOH + O(2) (R1a), RO(2) + HO(2) → ROH + O(3) (R1b), RO(2) + HO(2) → RO + OH + O(2) (R1c). Theoretical work suggests that reactions (R1b) and (R1c) may be a general feature of acyl peroxy and α-carbonyl peroxy radicals. In this work, branching ratios for R1a-R1c were derived for six carbonyl-containing peroxy radicals: C(2)H(5)C(O)O(2), C(3)H(7)C(O)O(2), CH(3)C(O)CH(2)O(2), CH(3)C(O)CH(O(2))CH(3), CH(2)ClCH(O(2))C(O)CH(3), and CH(2)ClC(CH(3))(O(2))CHO. Branching ratios for reactions of Cl-atoms with butanal, butanone, methacrolein, and methyl vinyl ketone were also measured as a part of this work. Product yields were determined using a combination of long path Fourier transform infrared spectroscopy, high performance liquid chromatography with fluorescence detection, gas chromatography with flame ionization detection, and gas chromatography-mass spectrometry. The following branching ratios were determined: C(2)H(5)C(O)O(2), Y(R1a) = 0.35 ± 0.1, Y(R1b) = 0.25 ± 0.1, and Y(R1c) = 0.4 ± 0.1; C(3)H(7)C(O)O(2), Y(R1a) = 0.24 ± 0.15, Y(R1b) = 0.29 ± 0.1, and Y(R1c) = 0.47 ± 0.15; CH(3)C(O)CH(2)O(2), Y(R1a) = 0.75 ± 0.13, Y(R1b) = 0, and Y(R1c) = 0.25 ± 0.13; CH(3)C(O)CH(O(2))CH(3), Y(R1a) = 0.42 ± 0.1, Y(R1b) = 0, and Y(R1c) = 0.58 ± 0.1; CH(2)ClC(CH(3))(O(2))CHO, Y(R1a) = 0.2 ± 0.2, Y(R1b) = 0, and Y(R1c) = 0.8 ± 0.2; and CH(2)ClCH(O(2))C(O)CH(3), Y(R1a) = 0.2 ± 0.1, Y(R1b) = 0, and Y(R1c) = 0.8 ± 0.2. The results give insights into possible mechanisms for cycling of OH radicals in the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号