共查询到20条相似文献,搜索用时 15 毫秒
1.
A semiclassical (SC) approximation to the quantum mechanical propagator for nonadiabatic systems is derived. Our derivation starts with an exact path integral expression that uses canonical coherent states for the nuclear degrees of freedom and spin coherent states for the electronic degrees of freedom. A stationary path approximation (SPA) is then applied to the path integral to obtain the SC approximation. The SPA results in complex classical trajectories of both nuclear and electronic degrees of freedom and a double ended boundary condition. The root search problem is solved using the previously proposed "real trajectory local search" algorithm. The SC approximation is tested on three simple one dimensional two-state systems proposed by Tully [J. Chem. Phys. 93, 1061 (1990)], and the SC results are compared to Ehrenfest and surface hopping predictions. Excellent agreement with quantum results is reached when the SC trajectory is far away from caustics. We discuss the origin of caustics in this SC formalism and the strengths and weaknesses of this approach. 相似文献
2.
3.
We propose to measure nonadiabaticity of molecular quantum dynamics rigorously with the quantum fidelity between the Born-Oppenheimer and fully nonadiabatic dynamics. It is shown that this measure of nonadiabaticity applies in situations where other criteria, such as the energy gap criterion or the extent of population transfer, fail. We further propose to estimate this quantum fidelity efficiently with a generalization of the dephasing representation to multiple surfaces. Two variants of the multiple-surface dephasing representation (MSDR) are introduced, in which the nuclei are propagated either with the fewest-switches surface hopping or with the locally mean field dynamics (LMFD). The LMFD can be interpreted as the Ehrenfest dynamics of an ensemble of nuclear trajectories, and has been used previously in the nonadiabatic semiclassical initial value representation. In addition to propagating an ensemble of classical trajectories, the MSDR requires evaluating nonadiabatic couplings and solving the Schro?dinger (or more generally, the quantum Liouville-von Neumann) equation for a single discrete degree of freedom. The MSDR can be also used in the diabatic basis to measure the importance of the diabatic couplings. The method is tested on three model problems introduced by Tully and on a two-surface model of dissociation of NaI. 相似文献
4.
A general approach to mapping a discrete quantum mechanical problem by a continuous Hamiltonian is presented. The method is based on the representation of the quantum number by a continuous action variable that extends from -infinity to infinity. The projection of this Hilbert space onto the set of integer quantum numbers reduces the Hamiltonian to a discrete matrix of interest. The theory allows the application of the semiclassical methods to discrete quantum mechanical problems and, in particular, to problems where quantum Hamiltonians are coupled to continuous degrees of freedom. The Herman Kluk semiclassical propagation is used to calculate the nonadiabatic dynamics for a model avoided crossing system. The results demonstrate several advantages of the new theory compared to the existing mapping approaches. 相似文献
5.
Semiclassical trajectory methods are tested for electronically nonadiabatic systems with conical intersections. Five triatomic model systems are presented, and each system features two electronic states that intersect via a seam of conical intersections (CIs). Fully converged, full-dimensional quantum mechanical scattering calculations are carried out for all five systems at energies that allow for electronic de-excitation via the seam of CIs. Several semiclassical trajectory methods are tested against the accurate quantum mechanical results. For four of the five model systems, the diabatic representation is the preferred (most accurate) representation for semiclassical trajectories, as correctly predicted by the Calaveras County criterion. Four surface hopping methods are tested and have overall relative errors of 40%-60%. The semiclassical Ehrenfest method has an overall error of 66%, and the self-consistent decay of mixing (SCDM) and coherent switches with decay of mixing (CSDM) methods are the most accurate methods overall with relative errors of approximately 32%. Furthermore, the CSDM method is less representation dependent than both the SCDM and the surface hopping methods, making it the preferred semiclassical trajectory method. Finally, the behavior of semiclassical trajectories near conical intersections is discussed. 相似文献
6.
Ben-Amotz D 《The journal of physical chemistry. B》2006,110(40):19861-19866
Bohr's atomic theory is widely viewed as remarkable, both for its accuracy in predicting the observed optical transitions of one-electron atoms and for its failure to fully correspond with current electronic structure theory. What is not generally appreciated is that Bohr's original semiclassical conception differed significantly from the Bohr-Sommerfeld theory and offers an alternative semiclassical approximation scheme with remarkable attributes. More specifically, Bohr's original method did not impose action quantization constraints but rather obtained these as predictions by simply matching photon and classical orbital frequencies. In other words, the hydrogen atom was treated entirely classically and orbital quantized emerged directly from the Planck-Einstein photon quantization condition, E = h nu. Here, we revisit this early history of quantum theory and demonstrate the application of Bohr's original strategy to the three quintessential quantum systems: an electron in a box, an electron in a ring, and a dipolar harmonic oscillator. The usual energy-level spectra, and optical selection rules, emerge by solving an algebraic (quadratic) equation, rather than a Bohr-Sommerfeld integral (or Schroedinger) equation. However, the new predictions include a frozen (zero-kinetic-energy) state which in some (but not all) cases lies below the usual zero-point energy. In addition to raising provocative questions concerning the origin of quantum-chemical phenomena, the results may prove to be of pedagogical value in introducing students to quantum mechanics. 相似文献
7.
A method based on a lattice summation technique for treating long-range electrostatic interactions in hybrid quantum mechanics/molecular mechanics simulations is presented in this article. The quantum subsystem is studied at the semiempirical level, whereas the solvent is described by a two-body potential of molecular mechanics. Molecular dynamics simulations of a (quantum) chloride ion in (classical) water have been performed to test this technique. It is observed that the application of the lattice summations to solvent-solvent interactions as well as on solute-solvent ones has a significant effect on solvation energy and diffusion coefficient. Moreover, two schemes for the computation of the long-range contribution to the electrostatic interaction energy are investigated. The first one replaces the exact charge distribution of the quantum solute by a Mulliken charge distribution. The long-range electrostatic interactions are then calculated for this charge distribution that interacts with the solvent molecule charges. The second one is more accurate and involves a modified Fock operator containing long-range electron-charge interactions. It is shown here that both schemes lead to similar results, the method using Mulliken charges for the evaluation of long-range interactions being, however, much more computationally efficient. 相似文献
8.
A previously developed nonadiabatic semiclassical surface hopping propagator [M. F. Herman J. Chem. Phys. 103, 8081 (1995)] is further studied. The propagator has been shown to satisfy the time-dependent Schrodinger equation (TDSE) through order h, and the O(h2) terms are treated as small errors, consistent with standard semiclassical analysis. Energy is conserved at each hopping point and the change in momentum accompanying each hop is parallel to the direction of the nonadiabatic coupling vector resulting in both transmission and reflection types of hops. Quantum mechanical analysis and numerical calculations presented in this paper show that the h2 terms involving the interstate coupling functions have significant effects on the quantum transition probabilities. Motivated by these data, the h2 terms are analyzed for the nonadiabatic semiclassical propagator. It is shown that the propagator can satisfy the TDSE for multidimensional systems by including another type of nonclassical trajectories that reflect on the same surfaces. This h2 analysis gives three conditions for these three types of trajectories so that their coefficients are uniquely determined. Besides the nonadiabatic semiclassical propagator, a numerically useful quantum propagator in the adiabatic representation is developed to describe nonadiabatic transitions. 相似文献
9.
Unlike the majority of molecular systems quantum dots can accommodate multiple excitations, which is a particularly important attribute for potential lasing applications. We demonstrate in this work the concept of using nth order nonlinear spectroscopies in the transient grating configuration as a means of selectively exciting (n-1)/2 excitons in a semiconductor and probing the subsequent relaxation dynamics. We report a direct observation of multiparticle dynamics on ultrashort time scales through comparison of third and fifth order experiments for CdSe colloidal quantum dots. Time constants associated with multiexciton recombination and depopulation dynamics are reported. Deviation from a Poisson model for the distribution of photoexcited excitons, biexcitons, and triexcitons is also discussed. 相似文献
10.
Starting from the position-momentum integral representation, we apply the correction operator method to the derivation of a uniform semiclassical approximation for the quantum propagator and then extend it to approximate the Boltzmann operator. In this approach, the involved classical dynamics is determined by the method itself instead of given beforehand. For the approximate Boltzmann operator, the corresponding classical dynamics is governed by a complex Hamiltonian, which can be described as a pair of real Hamiltonian systems. It is demonstrated that the semiclassical Boltzmann operator is exact for linear systems. A quantum propagator in the complex time is thus proposed and preliminary numerical results show that it is a reasonable approximation for calculating thermal correlation functions of general systems. © 2018 Wiley Periodicals, Inc. 相似文献
11.
On the basis of several earlier papers undiuview current availability of logic programming facilities, the authors propose a list-processing approach to the modelling of algebraic quantum field theory methods in which the noncommutative algebra of quantum -mechanical operators is emulated by lists. The processing produces reordered sequences of elements of a ring with a unit commutator and generates dynamic structures which for some initial arrangements correspond to partially ordered graphs characterized by resources relations and combinatorial identities. The approach is illustrated by reviewing the simple case of a forced harmonic oscillator. The programming aspects are briefly described. 相似文献
12.
13.
Hughes KH Parry SM Parlant G Burghardt I 《The journal of physical chemistry. A》2007,111(41):10269-10283
The hybrid quantum-classical approach of Burghardt and Parlant [Burghardt, I.; Parlant, G. J. Chem. Phys. 2004, 120, 3055], referred to here as the quantum-classical moment (QCM) approach, is demonstrated for the dynamics of a quantum double well coupled to a classical harmonic coordinate. The approach combines the quantum hydrodynamic and classical Liouvillian representations by the construction of a particular type of moments (that is, partial hydrodynamic moments) whose evolution is determined by a hierarchy of coupled equations. For pure states, which are at the center of the present study, this hierarchy terminates at the first order. In the Lagrangian picture, the deterministic trajectories result in dynamics which is Hamiltonian in the classical subspace, while the projection onto the quantum subspace evolves under a generalized hydrodynamic force. Importantly, this force also depends upon the classical (Q, P) variables. The present application demonstrates the tunneling dynamics in both the Eulerian and Lagrangian representations. The method is exact if the classical subspace is harmonic, as is the case for the systems studied here. 相似文献
14.
15.
We present a new approach to calculate real-time quantum dynamics in complex systems. The formalism is based on the partitioning of a system's environment into "core" and "reservoir" modes with the former to be treated quantum mechanically and the latter classically. The presented method only requires the calculation of the system's reduced density matrix averaged over the quantum core degrees of freedom which is then coupled to a classically evolved reservoir to treat the remaining modes. We demonstrate our approach by applying it to the spin-boson problem using the noninteracting blip approximation to treat the system and core, and Ehrenfest dynamics to treat the reservoir. The resulting hybrid methodology is accurate for both fast and slow baths, since it naturally reduces to its composite methods in their respective regimes of validity. In addition, our combined method is shown to yield good results in intermediate regimes where neither approximation alone is accurate and to perform equally well for both strong and weak system-bath coupling. Our approach therefore provides an accurate and efficient methodology for calculating quantum dynamics in complex systems. 相似文献
16.
Classical and semiclassical methods are developed to calculate and invert the wave packet motion measured in pump-probe experiments. With classical propagation of the Wigner distribution of the initial wave packet created by the pump pulse, we predict the approximate probe signal with slightly displaced recurrence peaks, and derive a set of first-order canonical perturbation expressions to relate the temporal features of the signal to the characteristics of the potential surface. A reduced dynamics scheme based on the Gaussian assumption leads to the correct center of mass motion but does not describe the evolution of the shape of the wave packet accurately. To incorporate the quantum interference into classical trajectories, we propose a final-value representation semiclassical method, specifically designed for the purpose of computing pump-probe signals, and demonstrate its efficiency and accuracy with a Morse oscillator and two kinetically coupled Morse oscillators. For the case of one-color pump probe, a simple phase-space quantization scheme is devised to reproduce the temporal profile at the left-turning point without actual wave packet propagation, revealing a quantum mechanical perspective of the nearly classical pump-probe signal. 相似文献
17.
The Caldeira-Leggett master equation, expressed in Lindblad form, has been used in the numerical study of the effect of a thermal environment on the dynamics of the scattering of a wave packet from a repulsive Eckart barrier. The dynamics are studied in terms of phase space trajectories associated with the distribution function, W(q,p,t). The equations of motion for the trajectories include quantum terms that introduce nonlocality into the motion, which imply that an ensemble of correlated trajectories needs to be propagated. However, use of the derivative propagation method (DPM) allows each trajectory to be propagated individually. This is achieved by deriving equations of motion for the partial derivatives of W(q,p,t) that appear in the master equation. The effects of dissipation on the trajectories are studied and results are shown for the transmission probability. On short time scales, decoherence is demonstrated by a swelling of trajectories into momentum space. For a nondissipative system, a comparison is made of the DPM with the "exact" transmission probability calculated from a fixed grid calculation. 相似文献
18.
A novel quantum method to deal with typical system-bath dynamical problems is introduced. Subsystem discrete variable representation and bath coherent-state sets are used to write down a multiconfigurational expansion of the wave function of the whole system. With the help of the Dirac-Frenkel variational principle, simple equations of motion--a kind of Schrodinger-Langevin equation for the subsystem coupled to (pseudo) classical equations for the bath--are derived. True dissipative dynamics at all times is obtained by coupling the bath to a secondary, classical Ohmic bath, which is modeled by adding a friction coefficient in the derived pseudoclassical bath equations. The resulting equations are then solved for a number of model problems, ranging from tunneling to vibrational relaxation dynamics. Comparison of the results with those of exact, multiconfiguration time-dependent Hartree calculations in systems with up to 80 bath oscillators shows that the proposed method can be very accurate and might be of help in studying realistic problems with very large baths. To this end, its linear scaling behavior with respect to the number of bath degrees of freedom is shown in practice with model calculations using tens of thousands of bath oscillators. 相似文献
19.
The photochromic ring-opening reaction of spiropyran(SP) has been investigated by a realistic semiclassical dynamics simulation,accompanied by SA3-CASSCF(12 10)/MS-CASPT2 potential energy curves(PECs) of S0–S2.The main simulation results show the dominate pathway corresponds to the ringopening process of trans-SP to form the most stable merocyanine(MC) product.These findings provide more important complementarity for interpreting experimental observations. 相似文献
20.
Coffey WT Kalmykov YP Titov SV Mulligan BP 《Physical chemistry chemical physics : PCCP》2007,9(26):3361-3382
Recent progress in our understanding of quantum effects on the Brownian motion in an external potential is reviewed. This problem is ubiquitous in physics and chemistry, particularly in the context of decay of metastable states, for example, the reversal of the magnetization of a single domain ferromagnetic particle, kinetics of a superconducting tunnelling junction, etc. Emphasis is laid on the establishment of master equations describing the diffusion process in phase space analogous to the classical Fokker-Planck equation. In particular, it is shown how Wigner's [E. P. Wigner, Phys. Rev., 1932, 40, 749] method of obtaining quantum corrections to the classical equilibrium Maxwell-Boltzmann distribution may be extended to the dissipative non-equilibrium dynamics governing the quantum Brownian motion in an external potential V(x), yielding a master equation for the Wigner distribution function W(x,p,t) in phase space (x,p). The explicit form of the master equation so obtained contains quantum correction terms up to o(h(4)) and in the classical limit, h --> 0, reduces to the classical Klein-Kramers equation. For a quantum oscillator, the method yields an evolution equation coinciding in all respects with that of Agarwal [G. S. Agarwal, Phys. Rev. A, 1971, 4, 739]. In the high dissipation limit, the master equation reduces to a semi-classical Smoluchowski equation describing non-inertial quantum diffusion in configuration space. The Wigner function formulation of quantum Brownian motion is further illustrated by finding quantum corrections to the Kramers escape rate, which, in appropriate limits, reduce to those yielded via quantum generalizations of reaction rate theory. 相似文献