首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Radon/thoron levels are estimated in Khammam district as a part of “Radon/thoron mapping” program in Andhra Pradesh, India. About 100 dwellings were chosen at random covering most parts of Khammam district. Twin chamber cup dosimeters consisting of solid-state nuclear track detectors (SSNTDs, LR-115, Type-II) were used to evaluate the radiation levels at quarterly intervals for a period of one calendar year. The average radon and thoron concentrations were found to be 39.1±13.3 and 19.4±14.9 Bq/m3, respectively. Seasonal variations of radon/thoron levels were also studied. Variations of radon/thoron concentration levels with different types of dwellings have been studied. In the bare flooring dwellings thoron levels were found to be highest in comparison to concrete, limestone and marble floorings.  相似文献   

2.
Indoor radon concentrations have been measured for two consecutive half-year periods in a wide range of dwellings of some regions of Punjab and Haryana states. The objective was to find correlation between the variations of indoor radon levels with the sub-soil, local geology, type of building materials, etc. of the two regions. So keeping this in view the indoor radon measurements have been carried out in the dwellings of different villages around the Tusham ring complex, Bhiwani District, Haryana, known to be composed of acidic volcanics and the associated granites along with some villages of Amritsar District, Punjab. The indoor radon concentration in the dwellings around Tusham (Haryana) have been found to be varying from 120.5±95 to 915.2±233 Bq m−3, whereas it ranges from 60.0±37 to 235.6±96 Bq m−3 for the dwellings of Punjab. The 222Rn concentration observed at most of locations particularly around Tusham ring complex region is higher than that of all the villages studied in Punjab region. Local geology including embedded granitic rocks, sub-soil, etc. as well as building materials having higher radioactive content are the major contributors for the higher indoor radon levels observed in the dwelling around Tusham, where few dwellings have higher radon concentrations than the ICRP, 1993 recommendations. The annual effective dose equivalent has also been estimated for each location of the both regions, which has been found to be varying from 1.0 to 17.2 mSv/y.  相似文献   

3.
LR-115 plastic track detectors have been used for the measurement of radon exhalation rate and radium concentration in soil samples collected from some villages of Kangra district, Himachal Pradesh, India. Uranium concentration has also been determined in these soil samples using fission track technique. Radium concentration in soil samples has been found to vary from 11.54 to 26.71 BqKg−1, whereas uranium concentration varies from 0.75 to 2.06 ppm. The radon exhalation rate in these samples has been found to vary from 15.16 to 35.11 mBqKg−1 h−1 (502.12 to 1162.64 mBqm−2 h−1).  相似文献   

4.
Studies conducted by Atomic Minerals Directorate of Exploration and Research (AMD) of Hyderabad, India had established the presence of higher concentrations of uranium in Lambapur and Peddagattu areas of Nalgonda district, AP, India and it was estimated that it could be a viable source for commercial extraction. The envisaged extraction process involves dispersion of radioactive particulate matter into atmosphere. Environmental radioactive studies in and around proposed mining areas at this point of time will be extremely useful for establishing base line data before a large scale uranium extraction process comes into existence. To this end, Solid State Nuclear Track Detectors were installed to evaluate indoor radon and thoron concentration levels in the dwellings of the area. The geometric means of radon and thoron concentration levels were found to be (7.1±0.2)×101 and (6.7±0.3)×101 Bq/m3, respectively. Simultaneously, natural background radiation measurements were also made and these levels are found to vary from 770 to 3995 μGy/y in the spatial distribution.  相似文献   

5.
Previously calibrated passive detectors (CR-39) and an active radon device (Radon Monitor RM3) were used to study seasonal variation of radon-222 concentration levels inside and outside specific locations in Jordan. The study sites were located in an area that used to be an old phosphate mine. We found that the maximum value of radon concentration in air inside the dwellings, as measured by the passive dosimeters, was 1532.9 Bq/m3 during the winter season, and the minimum one was 46.3 Bq/m3 during fall season. While the highest and lowest readings of the active monitor were 892 and 4 Bq/m3 during fall and summer seasons, respectively. The radon concentration in soil ranges from 0.2 kBq/m3 in spring to 37.8 kBq/m3 in fall.  相似文献   

6.
7.
Inhalation of radon (Rn-222) and its progeny is one of the most significant sources of natural radiation exposure of the population. Nowadays, high radon exposures have been shown to cause lung cancer and many governments all over the world have therefore recommended that radon exposures in dwellings and indoor workplaces should be limited. Radon levels in buildings vary widely from area to area depending on local geology. This paper presents the results of a long-term survey of radon concentrations carried out from 2005 till 2010 in schools and dwellings of Eastern Sicily, using the solid-state nuclear track detector (SSNTD) technique. The investigated area shows medium-high indoor radon concentrations, higher than the Italian average of about 70 Bq/m3, with peaks of 500 Bq/m3 or more in buildings near active faults. Fortunately, only a small fraction of the measurements, about 1.5% of total, was found greater than EU and Italian action limits for indoor and workplaces.  相似文献   

8.
Radium concentration and radon exhalation rate have been measured in soil samples collected from some areas belonging to upper Siwaliks of Kala Amb, Nahan and Morni Hills of Haryana and Himachal Pradesh states, India using LR-115 type II plastic track detectors. Uranium concentration has also been determined in these soil samples using fission track registration technique. Radium concentration has been found to vary from 5.30 to 31.71 Bq.kg−1, whereas uranium concentration varies from 33.21 to 76.26 Bq.kg−1. The radon exhalation rate in these samples varies from 216.87 to 1298.00 mBq.m−2hr−1 (6.15 to 36.80 mBq.kg−1.hr−1). Most of the samples have uranium concentration above the worldwide average concentration of 35 Bq.kg−1. A good correlation (R 2 = 0.76) has been observed between uranium concentration and radon exhalation rate in soil. The values of uranium, radium and radon exhalation rate in soil are compared with that from the adjoining areas of Punjab.  相似文献   

9.
Indoor radon survey in dwellings of some regions in Yemen   总被引:1,自引:0,他引:1  
Indoor radon survey in a total of 241 dwellings, distributed in some regions of Yemen was performed, using CR-39 based radon monitors. The objective of this radon survey is to get representative indoor radon data of three regions, namely Dhamar, Taiz and Hodeidah, situated at different altitudes above sea level. The radon concentrations varied from 3 to 270 Bqm−3 with an average of 42 Bqm−3. It was found that the average radon concentration in the surveyed areas increases with altitudes. The highest average radon concentration of 59 Bqm−3 was found in Dhamar city while the lowest average concentration of 8 Bqm−3 was found in Hodeidah city.  相似文献   

10.
Indoor radon measurements in dwellings of four Saudi Arabian cities   总被引:1,自引:0,他引:1  
An indoor radon survey of a total of 269 dwellings, with one dosimeter per house, distributed in four Saudi Arabian cities was carried out. The objective of this survey was to carry out indoor radon measurements of two cities in the Eastern Province, Khafji and Hafr Al-Batin and to compare this with two cities in the Western Province, Al-Madina and Taif. The survey provides additional information about indoor radon concentrations in Saudi Arabia. The results of the survey in these cities showed that the overall minimum, maximum and average radon concentration were 7,137 and 30 Bqm−3, respectively. The lowest average radon concentration (20 Bqm−3) was found in Hafr Al-Batin, while the highest average concentration was found in Khafji (40 Bqm−3).  相似文献   

11.
An experimental study has been carried out in an inhabited single-family house. Radon concentration in the different rooms of the house and in its garden soil has been measured with Nuclear Track Detectors. No high differences of radon concentration have been observed between the different rooms of the house, so that the proximity of the room level to the soil seems not to affect the radon concentration. The annual radon concentration obtained indoors and in the soil has been respectively 35 Bq m−3 and 24 kBq m−3. Since radon generation in the source, entry into indoor air and accumulation indoors depend on several parameters, the effect of a specific parameter on indoor radon concentration is difficult to explain from the radon measurements only. The RAGENA (RAdon Generation, ENtry and Accumulation indoors) model has been adapted to the room in the basement of the house. The mean radon concentration values obtained with the model are compared to experimental results derived from measurements using Nuclear Track Detectors. The use of the model, together with the experimental study, has allowed characterising radon sources, levels and entry mechanisms in the house. The concrete walls have been found to be the most relevant radon source, while the contribution of the soil is negligible in this case. The indoor radon level is given by the balance of the permanent exhalation from concrete and the removal due to ventilation. The indoor radon levels are close to the average value for the Barcelona area which, in turn, is close to the world averaged value.  相似文献   

12.
A whole body counter determined the presence of radioactivities up to 21.8 kBq for 214Bi and up to 18.7 kBq for 214Pb attached to clothes of workers in a Nuclear Research Laboratory. A radon survey reveals that 80% of the monitoring areas have radon concentration values lower than 500 Bq m−3, while 10% of the sampling points with values bigger than 1 kBq m−3 correspond to the workers mentioned above. By exposing samples of 0.04 m2 clothes in a radon chamber, it was observed that radon decay products 214Bi and 214Pb were attached to them with an activity of 315–618 Bq per each kBq m−3 of Rn concentration additionally, fibres characterised with a lower electrostatics build up showed the lower attachment.  相似文献   

13.
Radon/thoron and their progeny concentrations were measured in different types of dwellings at different locations around industrial areas, cities and rural areas of Brahmaputra Valley of Assam by using LR-115 (type-II) plastic detector. Radon levels of different dwellings were analysed with reference to the nature of building materials, ventilation patterns and the types of underlying soil. The results were discussed under the light of exposure limits set by ICRP. The average concentrations of indoor radon and thoron varied from 39.5 to 215.2 Bqm−3 and 12.9 to 37.6 Bqm−3, respectively. The estimated inhalation dose due to radon, thoron and their daughter products in the study areas varied from 0.53 to 1.00 μSvh−1.  相似文献   

14.
Exhalation of radon and its carrier gases in SW Taiwan   总被引:3,自引:0,他引:3  
Gas compositions of mud volcanoes reveal multiple sources for gas exhalation in SW Taiwan. For comparison, two sites, Yan-chao (YC) and Chung-lun (CL), were chosen for measurements of soil Rn concentrations using a portable radon detector. The 222Rn concentrations at the YC site were ca. 5200 Bq/m3. However, the average 222Rn concentrations at the CL site exhibited higher value of ca. 16,800 Bq/m3. With the reference of the gas flux and compositions from the nearby mud pool, the soil 222Rn concentrations are largely controlled by the flux of carrier gases exhaled from deep reservoirs.  相似文献   

15.
In dwellings, the radon and their daughter products contribute the largest fraction to the doses received from natural background radiation. In the present study, the radon levels at Madurai district of Tamilnadu have been measured initially for 15 dwellings using cellulose nitrate (C6H8O9N2) LR-115 type II (non-pelliculable) films and the dose assessment due to radon and its daughter product concentrations is calculated. These results were intercompared with other terrains viz. Jodhpur district of Rajasthan which is considered as semi-desert terrain and Jammu district of Jammu & Kashmir which is the hilly area. Also the natural radioactivity in soil samples of Madurai have been measured using NaI(Tl) detector based gamma spectrometry. From these radioactivity levels, the radium equivalent activity is calculated and a correlation between this and radon concentration has been tried out.  相似文献   

16.
In the present study measurement of radon and its progeny concentration has been undertaken in the buildings constructed in the surroundings of National Hydroelectric Power Corporation (NHPC). LR-115 Type-II solid state nuclear track detectors fixed on a thick flat card were exposed in bare mode. Track etch technique has been used to estimate the radon concentration in the rooms of some buildings. Annual effective dose has been calculated from the radon concentration to carry out the assessment of the variability of expected radon exposure of the population due to radon and its progeny. The radon levels in these dwellings vary from 9±4 to 472±28 Bq m−3 with an average value of 158±14.9 Bq m−3 whereas annual effective dose varies from 0.1±0.04 to 7±0.4 mSv y−1 with an average value of 2.3±0.2 mSv y−1. These values are below the recommended action levels.  相似文献   

17.
Environmental gamma exposure and radon concentration levels measured in Venezuelan regions are presented. A new generation image analyser was used for particle track counting in CR-39 detectors. Mineral water wells from where water is supplied for massive consumption have an alpha activity around 0.450 Bq L−1 and few of them have concentrations above 50 Bq L−1. Coastal potable water activity is on the average around 5.3 ± 12% Bq L−1. Indoor radon national average is 36 ± 5% Bq m−3; in two of the 36 monitored sites, the measured average is above 400 ± 5% Bq m−3. In air gamma dose values are between 100 and 144 nGy h−1. In soil, 137Cs concentration is around 0.5 and 10 Bq kg−1 at the depth of down to 20 cm. Building materials were included in this study. 7Be and 137Cs were measured in low concentration in tropical plants on Tepuy-s (sacred mountains in the Amazonas State). Geological active faults were identified by radon concentration measurements using LR-115.  相似文献   

18.
The aim of this work is to test a combination of a Makrofol track detector with a new type of charcoal (Carboxen-564) to design a personal radon dosimeter. The intention is to use this dosimeter as a personal radon dosimeter to measure the monthly radon exposure in workplaces, especially when the occupancy is not ecactly known. The proposed combination was exposed to low and high concentrations of radon in a large range of relative humidity (RH). For the optimal layer thickness, a charcoal bed of 2.2 mm, a specific track density of 5.1 tracks cm−2/kBq h m−3 was obtained. For a monthly working exposure (170 h) at an average radon concentration of 100 Bq/m3, this means 87 tracks/cm2 or 10 times the background of the Makrofol detector, with a statistical uncertainty of 15%.  相似文献   

19.
Indoor radon/thoron have been recognised as one of the health hazards for mankind. Common building materials used for construction of houses, which are considered as major sources of these gases in indoor environment, have been studied for exhalation rate of radon/thoron. ‘Can’ technique using plastic track detector LR-115 type-II has been used for measurement. Exhalation rates for radon and thoron have been found to be varying from a minimum value of 0.024 and 29.4 Bqm−2 h−1 for cement plastered brick to a maximum value of 0.16 and 692.2 Bqm−2 h−1 for unfired brick, respectively. Exhalation rate for thoron has been found to be several times higher than that for radon. Measured exhalation rates for thoron indicate significant presence of thoron in indoor environment which is also supported by indoor measurements of thoron and its progeny.  相似文献   

20.
Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75±30 and 200±80 Bq m−3. Results of the model adaptation to the house indicate that soil constitutes the most relevant radon source in both parts of the house. The radon concentration values predicted by the model indoors fall into the same range as the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号