首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this paper, we investigate the Noether symmetries of F(T) cosmology involving matter and dark energy. In this model, the dark energy is represented by a canonical scalar field with a potential. Two special cases for dark energy are considered, including phantom energy and quintessence. We obtain F(T)~T 3/4, and the scalar potential V(?)~? 2 for both models of dark energy and discuss quantum picture of this model. Some astrophysical implications are also discussed.  相似文献   

2.
We study a cosmological implication of holographic dark energy in the Brans–Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter α (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans–Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans–Dicke cosmology framework.  相似文献   

3.
In this paper, we reconstruct cosmological models in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the stress-energy tensor. We show that the dust fluid reproduces ΛCDM, phantom–non-phantom era and phantom cosmology. Further, we reconstruct different cosmological models, including the Chaplygin gas, and scalar field with some specific forms of f(R,T). Our numerical simulation for the Hubble parameter shows good agreement with the BAO observational data for low redshifts, z<2.  相似文献   

4.
We investigate the QCD ghost model of dark energy in the framework of Brans-Dicke cosmology. First, we study the non-interacting ghost dark energy in a flat Brans-Dicke theory. In this case we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of ghost energy density. Interestingly enough, we find that the equation of state parameter of the non-interacting ghost dark energy can cross the phantom line (wD=−1) provided the parameters of the model are chosen suitably. Then, we generalize the study to the interacting ghost dark energy in both flat and non-flat Brans-Dicke framework and find out that the transition of wD to phantom regime can be more easily achieved for than when resort to the Einstein field equations is made.  相似文献   

5.
This paper determines the existence of Noether symmetry in non-minimally coupled f(RT) gravity admitting minimal coupling with scalar field models. We consider a generalized spacetime which corresponds to different anisotropic and homogeneous universe models. We formulate symmetry generators along with conserved quantities through Noether symmetry technique for direct and indirect curvature–matter coupling. For dust and perfect fluids, we evaluate exact solutions and construct their cosmological analysis through some cosmological parameters. We conclude that decelerated expansion is obtained for the quintessence model with a dust distribution, while a perfect fluid with dominating potential energy over kinetic energy leads to the current cosmic expansion for both phantom as well as quintessence models.  相似文献   

6.
In this paper, we examine the interacting dark energy model in f(T) cosmology. We assume dark energy as a perfect fluid and choose a specific cosmologically viable form f(T) = ????T. We show that there is one attractor solution to the dynamical equation of f(T) Friedmann equations. Further we investigate the stability in phase space for a general f(T) model with two interacting fluids. By studying the local stability near the critical points, we show that the critical points lie on the sheet u* = (c ? 1)v* in the phase space, spanned by coordinates (u, v, ??, T). From this critical sheet, we conclude that the coupling between the dark energy and matter c ?? (?2, 0).  相似文献   

7.
《Physics letters. [Part B]》2006,632(5-6):597-604
Phantom cosmology allows to account for dynamics and matter content of the universe tracing back the evolution to the inflationary epoch, considering the transition to the non-phantom standard cosmology (radiation/matter dominated eras) and recovering the today observed dark energy epoch. We develop the unified phantom cosmology where the same scalar plays the role of early time (phantom) inflaton and late-time dark energy. The recent transition from decelerating to accelerating phase is described too by the same scalar field. The (dark) matter may be embedded in this scheme, giving the natural solution of the coincidence problem. It is explained how the proposed unified phantom cosmology can be fitted against the observations which opens the way to define all the important parameters of the model.  相似文献   

8.
We investigate the exact solutions of a Bianchi type-I space-time in the context of f(R, T) gravity [1], where f(R, T) is an arbitrary function of the Ricci scalar R and the trace of the energy-momentum tensor T. For this purpose, we find two exact solutions using the assumption of a constant deceleration parameter and the variation law of the Hubble parameter. The obtained solutions correspond to two different models of the Universe. The physical behavior of these models is also discussed.  相似文献   

9.
The theoretical and observational consequences of thermodynamics of open systems which allow matter creation, are investigated in modified f(R, T) (R is the Ricci scalar and T is the trace of energy-momentum tensor) theory of gravity within the framework of a flat Friedmann-Robertson-Walker line element. The simplest model f(R, T)=R+2f(T) with “gamma-law” equation of state p = (γ?1)ρ is assumed to obtain the exact solution. A power-law expansion model is proposed by considering the natural phenomenological particle creation rate ψ = 3β n H, where β is a pure number of the order of unity, n the particle number density and H is the Hubble parameter. A Big Rip singularity is observed for γ<0 describing phantom cosmology. The accelerated expansion of the Universe is driven by the particle creation. The density parameter shows the negative curvature of the Universe due to particle creation. The entropy increases with the evolution of the Universe. Some kinematics tests such as lookback time, luminosity distance, proper distance, angular diameter versus redshift are discussed in detail to observe the role of particle creation in early and late time evolution of the Universe.  相似文献   

10.
In this Letter we consider a quintom model of dark energy with a single scalar field T given by a Lagrangian which inspired by tachyonic Lagrangian in string theory. We consider non-minimal coupling of tachyon field to the scalar curvature, then we obtain the equation of state (EoS), and the condition required for the model parameters when ω crosses over −1.  相似文献   

11.
f(RT) gravity is an extended theory of gravity in which the gravitational action contains general terms of both the Ricci scalar R and the trace of the energy-momentum tensor T. In this way, f(RT) models are capable of describing a non-minimal coupling between geometry (through terms in R) and matter (through terms in T). In this article we construct a cosmological model from the simplest non-minimal matter–geometry coupling within the f(RT) gravity formalism, by means of an effective energy-momentum tensor, given by the sum of the usual matter energy-momentum tensor with a dark energy contribution, with the latter coming from the matter–geometry coupling terms. We apply the energy conditions to our solutions in order to obtain a range of values for the free parameters of the model which yield a healthy and well-behaved scenario. For some values of the free parameters which are submissive to the energy conditions application, it is possible to predict a transition from a decelerated period of the expansion of the universe to a period of acceleration (dark energy era). We also propose further applications of this particular case of the f(RT) formalism in order to check its reliability in other fields, rather than cosmology.  相似文献   

12.
We describe non-flat standard Friedmann cosmology of canonical scalar field with barotropic fluid in form of non-linear Schrödinger-type (NLS) formulation in which all cosmological dynamical quantities are expressed in term of Schrödinger quantities as similar to those in time-independent quantum mechanics. We assume the expansion to be superfast, i.e. phantom expansion. We report all Schrödinger-analogous quantities to scalar field cosmology. Effective equation of state coefficient is analyzed and illustrated. We show that in a non-flat universe, there is no fixed w eff value for the phantom divide. In a non-flat universe, even w eff > ?1, the expansion can be phantom. Moreover, in open universe, phantom expansion can happen even with w eff > 0. We also report scalar field exact solutions within frameworks of the Friedmann formulation and the NLS formulation in non-flat universe cases.  相似文献   

13.
In this work, we have studied the Brans-Dicke (BD) cosmology in anisotropic models. We present three dimensional dynamical system describing the evolution of anisotropic models containing perfect fluid and BD scalar field with self-interacting potential. The relevant equations have been transformed into the dynamical system. The critical points and the corresponding eigen values have been found in radiation, dust, dark energy, ΛCDM and phantom phases of the universe. The natures and the stability around the critical points have also been investigated.  相似文献   

14.
We discuss the interacting f(T) gravity with pressureless matter in an FRW spacetime. We construct an f(T) model by following the correspondence scheme incorporating a recently developed pilgrim dark energy model and taking the Hubble horizon as the IR cutoff. We use constructed model to discuss the evolution trajectories of the equation-of-state parameter, the ω T -ω′ T phase plane, and state-finder parameters in the evolving universe. It is found that the equation-of-state parameter gives a phantom era of the accelerated universe for some particular range of the pilgrim parameter. The ω T -ω′ T plane represents freezing regions only for an interacting framework, while the ΛCDM limit is attained in the state-finder plane. We also investigate the first and second laws of thermodynamics assuming equal temperatures at and inside the horizon in this scenario. Due to the violation of the first law of thermodynamics in f(T) gravity, we explore the behavior of the entropy production term. The validity of a generalized second law of thermodynamics depends on the present-day value of the Hubble parameter.  相似文献   

15.
We prove (in superspace) the equivalence between the higher-derivative N=1N=1 supergravity, defined by a holomorphic function F of the chiral scalar curvature superfield, and the standard theory of a chiral scalar superfield with a chiral superpotential W, coupled to the (minimal) Poincaré supergravity in four spacetime dimensions. The relation between the holomorphic functions F and W is found. It can be used as the technical framework for the possible scenario unifying the early Universe inflation and the present Universe acceleration. We speculate on the possible origin of our model as the effective supergravity generated by quantum superstrings, with a dilaton–axion field as the leading field component of the chiral superfield.  相似文献   

16.
In the derivation of holographic dark energy density, the area law of the black hole entropy plays a crucial role. However, the entropy-area relation can be modified from the inclusion of quantum effects, motivated from the loop quantum gravity, string theory and black hole physics. In this paper, we study cosmological implication of the interacting entropy-corrected holographic dark energy model in the framework of Brans–Dicke cosmology. We obtain the equation of state and the deceleration parameters of the entropy-corrected holographic dark energy in a non-flat Universe. As system’s IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as Lar(t). We find out that when the entropy-corrected holographic dark energy is combined with the Brans–Dicke field, the transition from normal state where w D > −1 to the phantom regime where w D < −1 for the equation of state of interacting dark energy can be more easily achieved for than when resort to the Einstein field equations is made.  相似文献   

17.
In this paper, within the scope of FRW cosmology for $k=0, \pm 1$ , we investigate the dynamics of the universe in cosmological model where a scalar field nonminimally is coupled to matter field. By best-fitting the model parameters with the observational data, for the direct interaction between the dark sectors in the model, we obtain new constraints on cosmological parameters. The result with the best fitted model parameters supports the current universe acceleration in all models and shows that only in flat universe case the phantom crossing occurs twice in the past and once in the future. The best fitted reconstructed potential function and other physical functions are also obtained.  相似文献   

18.
The spatially homogeneous and totally anisotropic Bianchi Type-II space-time dark energy model with EoS parameter is considered in the presence of a perfect fluid source in the framework of f(R,T) gravity proposed by Harko et al. (Phys. Rev. D, 84:024020, 2011). With the help of special law of variation for Hubble’s parameter proposed by Berman (Nuovo Cimento B, 74:182, 1983) a dark energy cosmological model is obtained in this theory. We consider f(R,T) model and investigate the modification R+f(T) in Bianchi type-II cosmology with an appropriate choice of a function f(T)=λT. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.  相似文献   

19.
The dynamical behaviors of FRW Universe containing a posivive/negative potential scalar field in loop quantum cosmology scenario are discussed. The method of the phase-plane analysis is used to investigate the stability of the Universe. It is found that the stability properties in this situation are quite different from the classical cosmology case. For a positive potential scalar field coupled with a barotropic fluid, the cosmological autonomous system has five fixed points and one of them is stable if the adiabatic index $\gamma $ satisfies $0<\gamma <2$ . This leads to the fact that the universe just have one bounce point instead of the singularity which lies in the quantum dominated area and it is caused by the quantum geometry effect. There are four fixed points if one considers a scalar field with a negative potential, but none of them is stable. Therefore, the universe has two kinds of bounce points, one is caused by the quantum geometry effect and the other is caused by the negative potential, the Universe may enter a classical re-collapse after the quantum bounce. This hints that the spatially flat FRW Universe containing a negative potential scalar field is cyclic.  相似文献   

20.
We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a 0 ? l P (where l P is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n F ) to energy density ε(n F ) dependent on the number density of fermions n F . As the early Universe expands, the dimensionless quantity ν(n F ) = P(n F )/ε(n F ) decreases with decreasing n F from its maximum value νmax = 1 for n F → ∞ to zero for n F → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n F )–ε(n F )–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R c =–μ2/ξ and radius a c ? a 0. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G N .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号