共查询到19条相似文献,搜索用时 78 毫秒
1.
基于支持向量机的水稻叶面积指数高光谱估算模型研究 总被引:2,自引:1,他引:2
为了研究支持向量机(SVM)对于作物农学参数高光谱估算的能力,通过大田小区试验,测定了2个品种、3个供氮水平处理的水稻在不同生长期的冠层高光谱反射率(350~2 500 nm)。依据Ladsat-5的TM传感器波段宽度,将高光谱反射率转换为10种不同的植被指数。利用所有样本的植被指数和水稻叶面积指数(LAI),通过不同统计模型的模拟分析,依据模型的R2选取了三种相关性较高的统计关系(包括NDVIgreen的指数关系、TCARI/OSAVI的乘幂关系和RVI2的乘幂关系)。对这三种关系,通过具有不同核函数的SVM模型和相应统计模型对LAI进行估算。结果表明:所有的SVM模型都具有较低的均方根误差值,估算精度都高于相应的统计模型;基于TCARI/OSAVI的POLY核SVM具有最高的估算精度,其RMSE比相应的统计模型降低近11个百分点。因此,SVM方法用于水稻LAI高光谱估算具有良好的学习能力和鲁棒性。 相似文献
2.
冬小麦叶面积指数遥感反演方法比较研究 总被引:5,自引:0,他引:5
叶面积指数(leaf area index, LAI)是反映作物生长状况和进行产量预测预报的主要指标之一,对诊断作物生长状况具有重要意义。遥感技术为大面积、快速监测植被LAI提供了有效途径。利用高光谱遥感影像,结合田间同步实验数据,探讨不同方法对冬小麦叶面积指数遥感反演的能力。介绍了支持向量机、离散小波变换、连续小波变换和主成分分析四种LAI反演方法。分别利用上述四种方法构建冬小麦LAI反演模型,并对不同算法反演的LAI模型进行了真实性检验。结果显示,支持向量机非线性回归模型精度最高,对冬小麦LAI估算能力最强,反演值与实测值拟合的决定系数为0.823 4、均方根误差为0.419 5。离散小波变换法和主成分分析法都是基于特征提取和数据降维,其多元变量回归分析对LAI估算能力相近,决定系数分别为0.697 1和0.692 4,均方根误差分别为0.605 8和0.554 1。连续小波变换法回归模型精度最低,不适宜直接用其小波系数来反演LAI。结果表明,非线性支持向量机模型最适宜用于研究区域的冬小麦LAI反演。 相似文献
3.
4.
针对近红外(Near Infrared,NIR)光谱测量中的小样本问题。本文提出了一种集成最小二乘支持向量机(Ensemble Least Squares Support Vector Machine,ELS-SVM)新算法。首先使用随机子空间算法(Random Subspace Method,RSM)原始高维变量空间划分为若干个低维度的子空间,然后分别在各个子空间建立最小二乘支持向量机(LS-SVM)模型,最后构造一个集成结果来进行预测。针对一批柴油样本的实验结果表明,本法对柴油十六烷值的预测精度优于传统的LS-SVM方法。 相似文献
5.
基于红外光谱和最小二乘支持向量机建立掺杂牛奶与纯牛奶的判别模型。分别配置含有葡萄糖牛奶(0.01~0.3gL-1)和三聚氰胺牛奶(0.01~0.3gL-1)样品各36个,采集纯牛奶及掺杂牛奶样品的红外光谱。采用最小二乘支持向量机分别建立掺杂葡萄糖、掺杂三聚氰胺、两种掺杂牛奶与纯牛奶的判别模型,并利用这些模型对未知样品进行判别,其判别正确率都为95.8%。研究结果表明:与线性的偏最小二乘判别建模方法相比,最小二乘支持向量机方法具有更强的预测能力。 相似文献
6.
提出了基于最小二乘支持向量机(LS-SVM)的分数阶混沌系统控制方法.基于分数阶线性系统稳定理论,通过线性分离的方法将系统分解为稳定的线性部分和相应的非线性部分,再利用支持向量机良好的非线性函数逼近和泛化能力设计了主动控制器,对非线性部分进行补偿,从而将分数阶混沌系统控制到平衡点.分别以分数阶Liu系统和分数阶Chen系统为例进行了仿真研究,表明该方法是有效和可行的. 相似文献
7.
食品安全隐患越来越受到重视,而食品添加剂的过量使用更是个重要的因素。应用FS920荧光光谱仪,研究了防腐剂山梨酸钾的荧光特性,得到山梨酸钾荧光特征峰于λex/λem=375/490nm采用基于最小二乘支持向量机对橙汁溶液中防腐剂山梨酸钾进行检测,通过改进的遗传算法寻优最小二乘支持向量机参数。经过样本训练得到橙汁溶液山梨酸钾的回归模型,对未知浓度的溶液进行预测,将新算法与基本遗传算法寻优的模型和BP神经网络对比。结果表明,自适应遗传-最小二乘支持向量机建立的预测模型在平均相对误差3.54%和平均回收率96.46%都是最优的,是一种准确有效的橙汁中山梨酸钾浓度检测方案。 相似文献
8.
提出了一种基于最小二乘支持向量机(LS-SVM)的橄榄油掺杂拉曼快速鉴别方法。首先,收集若干己知类别的橄榄油样作为训练样本,获取其拉曼谱图,并对其谱图进行预处理和波段选择,进而构建LSSVM分类器;对于未知类别的油样,获取其拉曼谱图,并进行相应的预处理和波段选择,由LSSVM分类器获得鉴别结果。实验以7种已知的特级初榨橄榄油为基础,分别掺入4种其它植物油(大豆油、菜籽油、玉米油、葵花籽油),获得112个掺杂油样。将全部样本随机分成训练集和测试集,对测试集样本的预测实验结果表明,本文方法能有效鉴别橄榄油掺杂,且掺杂量最低检测限为5%。与其它分类方法相比,LSSVM分类法具有最佳的分类性能。该方法快速、简便,为橄榄油掺杂鉴别提供了一种全新的方法。 相似文献
9.
基于最小二乘支持向量机的番茄汁糖酸度分析研究 总被引:2,自引:0,他引:2
近红外光谱应用于农产品内部品质无损检测的方法引起人们的广泛关注,在分析过程中建立一个稳定可靠的模型用于处理非线性数据集是十分重要的,也是有一定难度的。目前常用的偏最小二乘(PLS)、主成分回归(PCR)以及逐步多元线性回归(SMLR)等方法还不能解决这类问题。文章提出了将基于统计学原理的最小二乘支持向量机(LS-SVM)回归方法用于番茄汁的近红外(NIR)光谱分析,预测番茄汁品质(糖度和有效酸度)。运用LS-SVM方法以67个番茄汁样本建模,采用高斯径向基函数(RBF)为核函数,对33个样本进行糖酸度预测,糖度的相关系数为0.990 25,均方根标准预测误差为0.0056° Brix;有效酸度的相关系数为0.967 5,均方根标准预测误差为0.024 5。结果表明,LS-SVM方法要优于PLS和PCR建模方法,是一种快速、准确的近红外光谱分析方法。 相似文献
10.
采用中红外光谱法对甲醇柴油的甲醇含量进行检测分析。首先,对采集到的原始光谱进行预处理(标准正则变换、多元散射校正、一阶微分、二阶微分、Savitzky-Goly平滑),采用偏最小二乘法和最小二乘支持向量机建立了甲醇柴油的甲醇含量预测模型,并比较了不同预处理方法对模型预测能力的影响。实验结果表明,LSSVM的建模效果最佳,其预测集相关系数R2为0.9818,预测均方误差RMSEP为1.3917%(体积比)。因此,中红外光谱技术可用于甲醇柴油中甲醇含量的快速检测,且可以达到很好的效果。 相似文献
11.
基于SVM与RF的苹果树冠LAI高光谱估测 总被引:7,自引:0,他引:7
叶面积指数(leaf area index,LAI)是反映作物群体大小的较好的动态指标。运用高光谱技术快速、无损地估测苹果树冠叶面积指数,为监测苹果树长势和估产提供参考。以盛果期红富士苹果树为研究对象,采用ASD地物光谱仪和LAI-2200冠层分析仪,在山东省烟台栖霞研究区,连续2年测量了30个果园90棵苹果树冠层光谱反射率及LAI值;通过相关性分析方法构建并筛选出了最优的植被指数;利用支持向量机(support vector machine, SVM)与随机森林(random forests, RF)多元回归分析方法构建了LAI估测模型。新建的GNDVI527,NDVI676,RVI682,FD-NVI656和GRVI517五个植被指数及前人建立的两个植被指数NDVI670和NDVI705与LAI的相关性都达到了极显著水平;建立的RF回归模型中,校正集决定系数C-R2和验证集决定系数V-R2为0.920,0.889,分别比SVM回归模型提高了0.045和0.033,校正集均方根误差C-RMSE、验证集均方根误差V-RMSE为0.249,0.236,分别比SVM回归模型降低了0.054和0.058, 校正集相对分析误C-RPD、验证集相对分析误V-RPD达到了3.363和2.520,分别比SVM回归模型提高了0.598和0.262,校正集及验证集的实测值与预测值散点图趋势线的斜率C-S和V-S都接近于1,RF回归模型的估测效果优于SVM。RF多元回归模型适合盛果期红富士苹果树LAI的估测。 相似文献
12.
水果新鲜度是反映水果是否新鲜、饱满的重要品质指标,为了探讨水果不同货架期的预测和判别方法,以酥梨为研究对象,利用高光谱成像技术,结合偏最小二乘判别法(PLS-DA)和偏最小二乘支持向量机(LS-SVM)算法对酥梨货架期进行判别。由光源、成像光谱仪、电控位移平台和计算机等构成的高光谱成像装置采集样品光谱,装置光源采用额定功率为200 W四个溴钨灯泡成梯形结构设计,光谱范围为1 000~2 500 nm,分别率为10 nm。选取优质酥梨30个,货架期设置为1, 5和10 d,对30个样品完成3次光谱图像的采集,并矫正原始图像。实验结果表明:基于图像的酥梨货架期定性分析时,对不同货架期样品的原始图像进行PCA压缩,得到三种不同货架期的权重系数数据,PC1图像提取特征波长点为1 280,1 390,1 800,1 880和2 300 nm,以特征图像的平均灰度值作为自变量且以货架期作为因变量建立定性判别模型,建模集68个,预测集22个。最小二乘支持向量机以RBF为核函数时,预测集中样品的误判个数为1,误判率为4.5%。而当采用lin核函数时,样品的误判个数为0,误判率为0。PLS-DA定性分析时RMSEC为1.24,Rc为0.93。RMSEP为1,Rp为0.96,预测集误判率为0。特征图像对酥梨货架期判别LS-SVM中的lin核函数所建立的模型结果较好,优于RBF核函数的建模效果,也优于PLS-DA判别模型。ENVI软件提取实验样品光谱后建立LS-SVM和PLS-DA判别模型,LS-SVM利用RBF和lin核函数误判率分别为4.5%和0。与RBF核函数相比,lin核函数所建立的模型预测酥梨货架期的效果更好。PLS-DA方法主成分因子数为12,RMSEC和RMSEP分别为0.48和0.78,Rc和Rp分别为0.99和0.97,建模集与预测集的误判率均为零。LS-SVM中的lin核函数所建立的模型结果较好,依然优于PLS所建立的检测模型。酥梨的光谱信息结合LS-SVM可以实现对酥梨货架期的检测和判别。基于图像建立酥梨的货架期预测模型与光谱相比,都实现了酥梨货架期的判别,而特征图像法,选择区域较少流失部分信息,计算量小,建模结果相对略差。酥梨货架期的高光谱成像检测模型研究为消费者正确评价水果新鲜度提供了理论指导, 也为后期果水果货架期检测仪器的开发提供了技术支持。 相似文献
13.
高光谱成像的土壤剖面水分含量反演及制图 总被引:2,自引:0,他引:2
传统土壤水分的获取方法仅可获得离散的土壤水分点位数据,难以获得剖面上精细且连续的水分含量分布图。研究了野外条件下利用近红外高光谱(882~1 709 nm)成像反演剖面土壤水分含量(SMC),并实现精细制图的可行性。研究剖面位于江苏省东台市,我们利用近红外高光谱成像仪对剖面进行了5天原位连续观测,共采集了280个土样用于烘干法测定SMC。原始高光谱图像经数字量化值(DN)校正、黑白校正、拼接、几何校正、剪切和掩膜等一系列预处理后,提取各采样点的平均光谱反射率。提取光谱(Raw)经吸光度[LOG10(1/R)],Savitzky-Golay平滑(SG)、一阶微分(FD)、二阶微分(SD)、多元散射校正(MSC)和标准正态变量(SNV)转换后,采用偏最小二乘回归(PLSR)和最小二乘支持向量机(LS-SVM)方法建立SMC预测模型,并对比分析不同光谱预处理方法与建模方法组合条件下SMC的预测精度。结果表明,光谱反射率随SMC增加逐渐降低,不同光谱预处理方法的预测精度有所差异,除MSC方法外,同一光谱预处理方法的LS-SVM模型预测精度均高于PLSR模型,并且基于LOG10(1/R)光谱的LS-SVM模型对SMC预测精度最高,其建模集的决定系数(R2c)和均方根误差(RMSEc)分别为0.96和0.65%,预测集的决定系数(R2p)、均方根误差(RMSEp)和相对分析误差(RPDp)分别为0.88,1.05%和2.88。利用最优模型进行剖面SMC的高空间分辨率精细制图,通过比较SMC反演图中提取的预测值与实测值关系发现预测精度较高(R2: 0.85~0.95, RMSE: 0.94%~1.02%),且两者在剖面中的变化趋势基本一致,说明SMC反演图不仅能很好地反映出土壤水分在整个剖面中毫米级的含量分布信息,也可反映出同一位置处不同天数间的含量差异。因此,利用近红外高光谱成像结合优化的预测模型,能够实现土壤剖面SMC的定量预测及精细制图,有助于快速、有效监测田间剖面土壤水分状况。 相似文献
14.
15.
高光谱图像特征结合光谱特征用于毛桃碰伤时间分类 总被引:1,自引:0,他引:1
毛桃从果树上成熟到最后到达消费者手中,中间需要经过采摘、包装、运输等一系列过程,在每一个过程中都有可能产生碰伤果.因此查看哪一个过程产生的碰伤果最多,从而对加工过程进行针对性地改进就显得尤为重要.纵观国内外高光谱技术在检测水果碰伤方面的应用,绝大多数都是忽略图像特征而只使用了光谱特征,基于图像特征结合光谱特征建模的少之... 相似文献
16.
半透射高光谱结合流形学习算法同时识别马铃薯内外部缺陷多项指标 总被引:2,自引:0,他引:2
针对马铃薯内外部缺陷多项指标难以同时识别的问题,提出了一种半透射高光谱成像技术采用流形学习降维算法与最小二乘支持向量机(LSSVM)相结合的方法,该方法可同时识别马铃薯内外部缺陷的多项指标。试验以315个马铃薯样本为研究对象,分别采集合格、外部缺陷(发芽和绿皮)和内部缺陷(空心)马铃薯样本的半透射高光谱图像,同时为了符合生产实际,将外部缺陷马铃薯的缺陷部位以正对、侧对和背对采集探头的随机放置方式进行高光谱图像采集。提取马铃薯样本高光谱图像的平均光谱(390~1 040 nm)进行光谱预处理,然后分别采用有监督局部线性嵌入(SLLE)、局部线性嵌入(LLE)和等距映射(Isomap)三种流形学习算法对预处理光谱进行降维,并分别建立基于纠错输出编码的最小二乘支持向量机(ECOC-LSSVM)多分类模型。通过分析和比较建模结果,确定SLLE为最优降维算法,SLLE-LSSVM为最优马铃薯内外部缺陷识别模型,该方法对测试集合格、发芽、绿皮和空心马铃薯样本的识别率分别达到96.83%,86.96%,86.96%和95%,混合识别率达到93.02%。试验结果表明:基于半透射高光谱成像技术结合SLLE-LSSVM的定性分析方法能够同时识别马铃薯内外部缺陷的多项指标,为马铃薯内外部缺陷的快速在线无损检测提供了技术参考。 相似文献
17.
紫米是生活中常见的食材,具有丰富的营养价值。由于紫米价格较高导致染色紫米大量流入市场。本文使用太赫兹时域光谱技术结合化学计量学方法探索紫米掺假的快速检测方法。采用太赫兹时域光谱技术(THz-TDS)采集0~7 THz范围内紫米掺假的光谱数据,并选择0.5~2.5 THz波段的吸收系数谱和折射率谱进行分析并采用化学计量学方法对光谱数据进行建模分析。分别采用Savitzky-Golay卷积平滑(SG Smoothing, SG平滑)、基线校正(Baseline)、归一化(Normalization)、多元散射校正(MSC)等方法进行光谱预处理,结合偏最小二乘判别分析(PLS-DA)对紫米、紫米掺染色大米和紫米掺染色黑米进行定性分析。定性分析结果显示,通过主成分分析(PCA)的三种样品平面分布存在明显差异;经过基线校正的光谱数据建立的PLS-DA模型效果最佳,误判率为0。接着使用偏最小二乘法(PLS)结合SG平滑、Baseline、Normalization、MSC等预处理方法分别对紫米中掺染色大米和紫米中掺染色黑米的光谱数据建立PLS定量模型。结果显示,采用基线校正预处理方法的PLS建模效果最佳,紫米掺染色大米的预测集相关系数为0.936,预测集均方根误差(RMSEP)为0.095。紫米掺染色黑米的预测集相关系数为0.914,预测集均方根误差为0.096。为对比分析线性(PLS)与非线性(LS-SVM)两种定量模型方法的预测精度,采用相同预处理方法后的紫米掺假含量光谱数据建立最小二乘支持向量机(LS-SVM)预测模型,选用径向基函数(RBF)作为核函数。结果表明采用基线校正处理后LS-SVM模型效果最佳,紫米中掺染色大米的预测集均方根误差(RMSEP)为0.092,预测集相关系数(Rp)为0.979;紫米中掺染色黑米的预测集均方根误差(RMSEP)为0.093,预测集相关系数(Rp)为0.948。对比发现对紫米掺假的含量建立LS-SVM预测模型较PLS模型的稳定性更好、精确度更高。研究表明,太赫兹时域光谱结合化学计量学方法可为紫米掺假的定性定量分析提供快速精确的分析方法。 相似文献
18.
基于高光谱成像技术的番茄叶片灰霉病早期检测研究 总被引:1,自引:0,他引:1
提出了独立软模式法(SIMCA)的番茄叶片灰霉病特征波段图像的提取,并通过多元线性回归法(MLR)提取波段融合图像,通过最小距离法获取番茄灰霉病患病信息的技术路线。利用680~740 nm波段的方差图像和建模能力参数提取的特征波段,并作为输入变量进行MLR分析,在0.5准确率阈值下,准确率均大于99%,说明特征波段可以实现番茄叶片灰霉病的检测,并利用MLR回归系数提取波段融合图像,通过最小距离法获取番茄灰霉病患病信息,结果表明所提出的方法具有很好的预测能力,为番茄灰霉病的早期检测提供了一种新方法,且大大降低了高光谱图像的数据处理时间。 相似文献
19.
冬小麦不同生育时期叶面积指数反演方法 总被引:20,自引:0,他引:20
针对当前作物叶面积指数遥感反演过程中,在不同生育时期采用相同的植被指数进行反演存在叶面积指数反演精度较低的问题。以冬小麦为研究对象,选取了对冬小麦覆盖度响应程度不同的六种宽带和四种窄带共10种植被指数,分析比较了在冬小麦整个生育期选用当前广泛使用的归一化植被指数(NDVI)反演冬小麦的LAI和在冬小麦不同生长阶段选用不同的植被指数反演冬小麦LAI的结果差异。在冬小麦整个生育期内使用NDVI反演小麦LAI得到的LAI反演值和真实值之间的R2=0.558 5,RMSE=0.320 9。改进的比值植被指数(mSR)适合于反演冬小麦生长前期(拔节期之前)的LAI,得到的LAI反演值和真实值之间的相关系数r=0.728 7,均方根误差RMSE=0.297 1;比值植被指数(SR)适于反演冬小麦生长中期(拔节到抽穗前),得到的LAI反演值和真实值之间的R2=0.654 6,RMSE=0.306 1;NDVI适于反演冬小麦生长后期(抽穗到成熟期)的LAI,得到的LAI反演值和真实值之间的R2=0.679 4,均方根误差RMSE=0.316 4。 研究表明:在冬小麦的不同生育时期,根据地表作物覆盖度的变化和反射率的变化,选择不同的植被指数建立冬小麦LAI的反演模型获得的反演精度均高于在冬小麦整个生育期使用NDVI获得的反演结果。说明在冬小麦的不同生育时期选择不同的植被指数构建LAI的分段反演模型可以改善冬小麦LAI的反演精度。 相似文献