共查询到17条相似文献,搜索用时 62 毫秒
1.
机载双视场中波红外光学系统优化设计 总被引:1,自引:0,他引:1
为了满足机载红外搜索与跟踪系统的实嘎使用要求,根据变焦系统的基本理论及中波红外系统的特点,设计了320pixel×256pixel的中波制冷型焦平面阵列探测器的双视场中波红外光学系统。系统采用了二次成像结构,并在系统的第一像面位置安装光阑,以此减小杂散光对系统的影响。设计结果表明:系统具有100%冷光栏效率,在仅移动一片透镜的情况下可实现在800和400mln的两档变焦,系统F数为4且恒定不变,像面保持稳定,系统场曲〈0.04mm,畸变〈2.5%,在探测器的Nyquist频率16lp/mm处光学传递函数的峰值〉0.5,表明光学系统的像质满足使用要求。 相似文献
2.
3.
设计一款实际工程应用的红外三视场光学系统,其中大中视场利用透镜组切换变倍,小视场和大视场利用反射镜切换变倍。设计中采用二次成像的方式,3个视场共用二次成像透镜组,保证100%冷屏效率,减小第1片透镜的过口径。同时,采用非球面技术校正系统的球差和彗差,通过光学设计软件CODE V仿真,得出最大的点列斑为11 m左右,并且MTF接近衍射极限,成像质量完全满足使用要求。最后,该系统利用反射镜折叠光路实现了系统结构紧凑、体积小的特点。 相似文献
4.
折/衍混合的红外双视场光学系统设计 总被引:1,自引:0,他引:1
为了实现红外双视场光学系统两个视场间的快速切换,同时满足便携式及易安装的需求,设计了一种轻量化的折/衍混合红外双视场光学系统.系统采用折/衍混合和二次成像光学结构,利用光学设计软件对系统进行优化,评价了系统的像质,分析了系统温度补偿问题并给出其温度调焦曲线.系统工作波长为3.7~4.8μm,能实现120mm/60mm两档焦距变换.设计结果表明,冷光阑效率达到100%,在探测器的Nyquist频率33lp/mm处,轴外视场光学系统的调制传递函数大于0.3,系统光学总长为200mm.整个系统包括7块透镜,只需移动一片透镜就能完成双视场的转换,结构简单,实现了轻量化和高质量成像. 相似文献
5.
高速切换紧凑型双视场无热化红外光学系统设计 总被引:1,自引:0,他引:1
采用透射二次成像光学系统结构形式,实现了远射比为1,F数为1.67,变倍比为4.6的红外双视场光学系统设计。采用光学元件切换变倍方式,配合电磁阀切换机构实现了60 ms的变倍速率;采用光学被动补偿方式,通过适当的光学和结构材料匹配,实现了-40~+50℃无热化设计。设计结果表明:光学系统在不同温度下各视场调制传递函数在特征频率为20 lp/mm时接近衍射极限,空间排布紧凑,视场切换速度快,该双视场红外光学系统满足应用需求。 相似文献
6.
为了同时探测中波红外和长波红外两个波段信息,实现两个不同视场快速切换,采用空间多镜头图像拼接全景成像法,设计了四通道制冷型中/长红外双波段双视场全景成像光学系统。该全景系统由周视方向3个互成120的红外物镜和顶视方向一个红外物镜构成,每一个成像通道光学系统采用二次成像结构。F数为2,工作波段为中波3.5 m~4.8 m、长波7.8 m~9.8 m,双视场两档焦距之比为5,通过轴向移动变倍组可以完成122/44.49双视场转换。利用折/衍混合器件及非球面设计技术,采用光学被动式消热差法对光学系统进行了温度补偿。设计结果表明,该双视场光学系统具有100%冷光阑效率和良好的冷反射抑制能力。在-40℃~+60℃范围内,在奈奎斯特频率18 lp/mm位置处,中波红外系统MTF值均大于0.5,长波红外系统MTF值均大于0.3。 相似文献
7.
8.
9.
非制冷长波红外热像仪折衍混合双视场光学系统设计 总被引:1,自引:0,他引:1
根据衍射光学元件具有大的负向色散特性,将衍射光学元件应用于红外双视场光学系统中,根据傅里叶光学分析衍射光学元件(DOE)的消色差,列表对比折射透镜与衍射光学透镜的特性,并给出变倍比为4∶1可用作非制冷红外热像仪的光学系统的具体设计实例.系统采用切入式变焦方式,在短焦时切入2片透镜实现宽视场,通过引入二元面和非球面提高了成像质量.设计结果表明:在空间频率11 lp/mm处,短焦距40 mm时,各个视场的MTF值均大于0.6;长焦距160 mm时,各个视场的MTF值均大于0.7,宽视场和窄视场都具有较好的成像质量. 相似文献
10.
无热化双视场红外光学系统的设计 总被引:5,自引:0,他引:5
介绍了一种无热化双视场红外光学系统的光学设计,给出了系统的主要技术指标和要求,说明了系统的设计原理和实现方法。利用变焦原理和折衍混合系统无热化设计技术,仅用7个光学元件实现了双视场、无热化红外光学系统的设计,并且系统中只利用1个透镜的轴向移动,实现了双视场转换。给出了系统的仿真和像质评价结果。 相似文献
11.
本文基于卡塞格林系统设计了红外制冷型长焦分档变倍光学系统,计算、推导了光学初始参数及组元的光焦度分配。采用了二次成像结构形式,主物镜组采用R-C光学结构用于缩短筒长,使用投影镜组解决冷屏匹配问题,利用调焦镜实现调焦,通过切换投影镜组后组实现变倍,然后对光学系统像差进行了优化设计,分别给出了长焦系统和短焦系统不同视场的成像质量优化结果,0.8视场内光学传递函数在空间频率17 lp/mm时均大于0.4。最后对主要结构进行了相应的精度分析,结果表明该设计能够很好地满足工程实际需要。 相似文献
12.
13.
针对多模制导中长焦距红外光学系统结构紧凑及宽温度范围热稳定性的要求,设计了一种中波红外折反光学系统。该系统根据其它模式制导的要求,采用固定焦距和口径的主镜,通过二次成像,在保持长焦距的同时减小了透镜的口径,降低了到达中继成像系统主光线的高度,同时也降低了制造成本。设计了波长为3.7~4.8 μm、焦距f为300 mm、F数为2的中波红外成像系统。结果表明,该系统结构紧凑像质优良,各视场光学传递函数均大于0.6,接近衍射极限,并且在-50~70℃可实现光学被动消热差。针对该光学系统进行了公差分析并提出了抑制杂散辐射的方法,该系统满足实际加工和应用需求。 相似文献
14.
In the determination of focal length of large focal length lenses, conventionally, a large length of optical bench is needed to accommodate the experimental set-up, and the measurements are associated with bench errors. In order to overcome these drawbacks, a simple method is suggested wherein the use of a plane mirror reduces the required length of the optical bench by nearly a factor of two and the bench errors are minimized with the use of a travelling microscope for the measurement of distances. 相似文献
15.
根据某探测设备可见光通道光学系统的特点和技术指标要求,详细介绍长焦距大口径连续变焦光学系统结构形式选择、初始结构参数计算及像差平衡的方法,给出运用该方法设计的采用正组机械补偿形式的长焦距大口径连续变焦光学系统的设计结果。对连续变焦光学系统进行了像质检测、实景成像及环境试验考核,其结果表明:该光学系统能满足某探测设备的性能要求。 相似文献
16.