首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采用密度泛函理论对CO与钯团簇的相互作用进行了系统研究.结果表明,PdnCO(n=1-8)体系的最低能量结构是在Pdn(n=1-8)团簇最低能最结构或亚稳态结构的基础上吸附CO生长而成;CO的吸附以端位吸附为主,其吸附没有改变Pdn团簇的结构;CO分子在Pdn团簇表面发生的是非解离性吸附.与优化的CO键长(0.1166 nm)相比,除了n=2,团簇PdnCO的C-O键长为0.1167-0.1168 nm,吸附后C-O键长变化较小,CO分子被活化程度较小.电荷集居数分析表明,CO的吸附对Pdn团簇的影响比较小;二阶能量差分表明,n=4,6的团簇是相对稳定的团簇.  相似文献   

2.
采用密度泛函理论对CO与钯团簇的相互作用进行了系统研究. 结果表明, PdnCO(n=1-8)体系的最低能量结构是在Pdn(n=1-8)团簇最低能量结构或亚稳态结构的基础上吸附CO生长而成; CO的吸附以端位吸附为主, 其吸附没有改变Pdn团簇的结构; CO分子在Pdn团簇表面发生的是非解离性吸附. 与优化的CO键长(0.1166 nm)相比, 除了n=2, 团簇PdnCO的C—O键长为0.1167-0.1168 nm, 吸附后C—O键长变化较小, CO分子被活化程度较小. 电荷集居数分析表明, CO的吸附对Pdn团簇的影响比较小; 二阶能量差分表明, n=4,6的团簇是相对稳定的团簇.  相似文献   

3.
李志斌  王红涛 《化学通报》2023,86(11):1389-1394
为了探究吸附H2后的Pdn团簇在Cu2O(111)完整表面和铜缺陷表面上的稳定性,计算了负载在Cu2O(111)完整表面和铜缺陷表面上的Pdn(n=1-4)对H2分子的最稳定吸附结构;利用在给定H2压力和温度下Pdn / Cu2O表面吸附H2的相图揭示了Pdn团簇在Cu2O(111)两个表面的变化情况。结果表明,在吸附了H2分子以后,Pdn团簇更倾向于保持原有的结构,且随着Pd团簇的增大,吸附H2的数量也逐渐增长。  相似文献   

4.
运用密度泛函理论系统研究了甲烷在MV_3O_y~q (M=Au/Ag,y=6–8,q=0或±1)团簇上的吸附和活化。研究得到了吸附体系的微观几何构型、吸附能、电荷分布等性质,找到了5个可以明显活化甲烷分子的含Au团簇。在这些体系中,Au均吸附在基底团簇V_3O_y~q的O位置,而CH_4均在Au原子上被活化。团簇电荷对活化能力有明显影响,阳离子团簇的活化能力最强,中性体系次之,阴离子团簇的活化能力很弱。测试计算表明引入D3色散矫正对于体系结构和能量的计算结果影响不大。本文作为单原子催化剂上甲烷吸附和活化反应的团簇模型研究,为进一步研究单原子催化剂上甲烷的活化机理提供了基础,也为合理设计低温下甲烷转化的单原子催化剂提供了有益的线索。  相似文献   

5.
采用密度泛函理论(DFT)计算了CH4在电中性(Ce O2)m(m=1~3)团簇上的活化情况,并对其机理进行了探讨.计算结果表明,甲烷C—H键在团簇上的活化为亲核加成模式,电子由团簇流向甲烷C—H反键轨道,使甲烷C—H键削弱而得以活化,反应的过渡态为四中心结构.团簇的桥氧位活化甲烷C—H键的活性大于端氧位,而三重桥氧位的活性高于二重桥氧位.团簇中作用位点Ce和O原子的电荷布居与其活化甲烷C—H的能力密切相关.溶剂的存在不仅降低了甲烷C—H活化自由能垒,而且使与甲烷作用的团簇各位点的活性差异缩小.  相似文献   

6.
采用密度泛函理论(DFT)计算了CH4在电中性(CeO2)m(m=1~3)团簇上的活化情况, 并对其机理进行了探讨. 计算结果表明, 甲烷C—H键在团簇上的活化为亲核加成模式, 电子由团簇流向甲烷C—H反键轨道, 使甲烷C—H键削弱而得以活化, 反应的过渡态为四中心结构. 团簇的桥氧位活化甲烷C—H键的活性大于端氧位, 而三重桥氧位的活性高于二重桥氧位. 团簇中作用位点Ce和O原子的电荷布居与其活化甲烷C—H的能力密切相关. 溶剂的存在不仅降低了甲烷C—H活化自由能垒, 而且使与甲烷作用的团簇各位点的活性差异缩小.  相似文献   

7.
采用密度泛函理论(DFT)方法研究了电中性团簇MCu2Ox(M=Cu2+, Ce4+, Zr4+; x=3, 4)的特性及其对甲烷和二氧化碳直接合成乙酸反应的影响. 结果表明, 团簇催化的反应由甲烷C—H活化、 二氧化碳插入引起C-C偶联、 CH3COO转向和氢迁移4步构成. 前两步为关键步骤, C—H和C-C各自与团簇活性位点间形成四中心结构并推动反应进行. 电子自甲烷流出到团簇, 再流入二氧化碳, 使甲烷的C—H和二氧化碳的C=O得以活化, 继而驱动C-C偶联. Ce, Zr引入至氧化铜团簇中后, 团簇由原有的六元环结构衍变为六元环Ⅰ、 掺杂原子分别位于中心和端末的双四元环Ⅱ和Ⅲ 3种结构. 团簇结构和电子自旋均会影响反应的进行. 低自旋团簇有利于甲烷 C—H活化, 而高自旋团簇则有利于C-C偶联; 在3种掺杂团簇结构中, 处于三重态的结构Ⅲ团簇可以较好地兼顾C—H活化和C-C偶联. 通过比较相同结构发现, Ce, Zr掺杂调变了氧化铜团簇活性位点的局域电荷, 虽使其对甲烷C—H活化的能力略有下降, 但却显著降低了C-C偶联反应的活化自由能垒, 从而促进了反应的进行. 掺杂原子Zr的助剂作用比Ce要大.  相似文献   

8.
在密度泛函理论B3LYP水平上, 对InnNa和InnNa+(n=2-8)团簇进行了结构优化和振动频率计算. 计算结果表明, InnNa(n=2、3、4、6)最稳定结构中的对称性分别为C2v、C3v、C4v和C2v, 而InnNa(n=5、7、8)的最稳定结构的对称性为C1点群. 从InnNa(n=4-8)的最稳定结构可以看出, Na原子均位于四个In原子形成的四边形面上. 对于InnNa+(n=2-8), 除了In2Na+、In4Na+和In7Na+, 其它结构都与其中性结构相似. 进一步计算InnNa(n=2-8)团簇的平均结合能、能量的二阶差分以及绝热电离能表明, InnNa(n=2-8)团簇能量的二阶差分呈现奇偶交替特征, In4Na和In6Na较其它团簇更为稳定, 而且理论计算得到的绝热电离能和实验结果吻合得很好.  相似文献   

9.
采用从头算分子动力学模拟与密度泛函理论相结合的方法,计算模拟了不同尺寸的Pdn(n=1~32)金属团簇在UiO-66孔道中的稳定构型,并对金属团簇与材料骨架之间的作用方式、结合能及骨架形变能等进行了讨论.采用Bader电荷分析方法对该体系的电荷转移情况进行了计算分析.结果表明,Pdn团簇稳定负载于UiO-66材料的四面体笼中,且均呈堆积型构型.当Pd原子个数为28时体系的热力学稳定性最好,这与金属团簇和有机配体的成键方式相关,是金属团簇内部结合能和骨架形变能综合作用的结果.  相似文献   

10.
用密度泛函理论(DFT)的B3LYP方法,在6-31G*水平上,对(AlN)+n和(AlN)-n(n=1~15)团簇的几何构型、红外光谱和热力学稳定性进行了研究,并对它们的电离能及电子亲和能进行了讨论.结果表明:(AlN)n团簇的电荷状态对簇合物的结构有较大影响,随着n的增大影响逐渐减小;所有平衡结构中不存在Al-Al和N-N键,Al-N键是惟一键型;(AlN)+n和(AlN)-n结构稳定性幻数与(AlN)n相同,即n=2,4,6,…等偶数结构较为稳定;(A1N)10团簇具有最大的电离能(IP=9.14 eV)和最小的电子亲和能(EA=0.19eV),较其他团簇更稳定.  相似文献   

11.
The adsorption of water molecules (H(2)O) on sodium chloride cluster cations and anions was studied at 298 K over a mass range of 100-1200 amu using a custom-built laser desorption ionization reactor and mass spectrometer. Under the conditions used, the cations Na(3)Cl(2)(+) and Na(4)Cl(3)(+) bind up to three water molecules, whereas the larger cations, Na(5)Cl(4)(+) to Na(19)Cl(18)(+), formed hydrates with one or two only. The overall trend is a decrease in hydration with increasing cluster size, with an abrupt drop occurring at the closed-shell Na(14)Cl(13)(+). As compared to the cluster cations, the cluster anions showed almost no adsorption. Among smaller clusters, a weak adsorption of one water molecule was observed for the cluster anions Na(6)Cl(7)(-) and Na(7)Cl(8)(-). In the higher mass region, a substantial adsorption of one water molecule was observed for Na(14)Cl(15)(-). Density functional theory (DFT) computations were carried out for the adsorption of one molecule of H(2)O on the cations Na(n)Cl(n-1)(+), for n = 2-8, and the anions Na(n)Cl(n+1)(-), for n = 1-7. For each ion, the structure of the hydrate, the hydration energy, and the standard-state enthalpy, entropy, and Gibbs energy of hydration at 298 K were computed. In addition, it was useful to compute the distortion energy, defined as the electronic energy lost due to weakening of the Na-Cl bonds upon adsorption of H(2)O. The results show that strong adsorption of a H(2)O molecule occurs for the linear cations only at an end Na ion and for the nonlinear cations only at a corner Na ion bonded to two Cl ions. An unexpected result of the theoretical investigation for the anions is that certain low-energy isomers of Na(6)Cl(7)(-) and Na(7)Cl(8)(-) bind H(2)O strongly enough to produce the observed weak adsorption. The possible implications of these results for the initial hydration of extended NaCl surfaces are discussed.  相似文献   

12.
The authors present theoretical results describing the adsorption of H2 and H2S molecules on small neutral and cationic gold clusters (Au(n)((0/+1)), n=1-8) using density functional theory with the generalized gradient approximation. Lowest energy structures of the gold clusters along with their isomers are considered in the optimization process for molecular adsorption. The adsorption energies of H2S molecule on the cationic clusters are generally greater than those on the corresponding neutral clusters. These are also greater than the H2 adsorption energies on the corresponding cationic and neutral clusters. The adsorption energies for cationic clusters decrease with increasing cluster size. This fact is reflected in the elongations of the Au-S and Au-H bonds indicating weak adsorption as the cluster grows. In most cases, the geometry of the lowest energy gold cluster remains planar even after the adsorption. In addition, the adsorbed molecule gets adjusted such that its center of mass lies on the plane of the gold cluster. Study of the orbital charge density of the gold adsorbed H2S molecule reveals that conduction is possible through molecular orbitals other than the lowest unoccupied molecular orbital level. The dissociation of the cationic Au(n)SH2+ cluster into Au(n)S+ and H2 is preferred over the dissociation into Au(m)SH2+ and Au(n-m), where n=2-8 and m=1-(n-1). H2S adsorbed clusters with odd number of gold atoms are more stable than neighboring even n clusters.  相似文献   

13.
We investigate the interaction between water molecules and gold nanoclusters Au(n) through a systematic density functional theory study within both the generalized gradient approximation and the nonlocal van der Waals (vdW) density functional theory. Both planar (n = 6-12) and three-dimensional (3D) clusters (n = 17-20) are studied. We find that applying vdW density functional theory leads to an increase in the Au-Au bond length and a decrease in the cohesive energy for all clusters studied. We classify water adsorption on nanoclusters according to the corner, edge, and surface adsorption geometries. In both corner and edge adsorptions, water molecule approaches the cluster through the O atom. For planar clusters, surface adsorption occurs in a O-up/H-down geometry with water plane oriented nearly perpendicular to the cluster. For 3D clusters, water instead favors a near-flat surface adsorption geometry with the water O atom sitting nearly atop a surface Au atom, in agreement with previous study on bulk surfaces. Including vdW interaction increases the adsorption energy for the weak surface adsorption but reduces the adsorption energy for the strong corner adsorption due to increased water-cluster bond length. By analyzing the adsorption induced charge rearrangement through Bader's charge partitioning and electron density difference and the orbital interaction through the projected density of states, we conclude that the bonding between water and gold nanocluster is determined by an interplay between electrostatic interaction and covalent interaction involving both the water lone-pair and in-plane orbitals and the gold 5d and 6s orbitals. Including vdW interaction does not change qualitatively the physical picture but does change quantitatively the adsorption structure due to the fluxionality of gold nanoclusters.  相似文献   

14.
A comparative study of the adsorption of an O2 molecule on pure Au(n+1)+ and doped MAu(n)+ cationic gold clusters for n = 3-7 and M = Ti, Fe is presented. The simultaneous adsorption of two oxygen atoms also was studied. This work was performed by means of first principles calculations based on norm-conserving pseudo-potentials and numerical basis sets. For pure Au4 +, Au6+, and Au7+ clusters, the O2 molecule is adsorbed preferably on top of low coordinated Au atoms, with an adsorption energy smaller than 0.5 eV. Instead, for Au5+ and Au8+, bridge adsorption sites are preferred with adsorption energies of 0.56 and 0.69 eV, respectively. The ground-state geometry of Au(n)+ is almost unperturbed after O2 adsorption. The electronic charge flows towards O2 when the molecule is adsorbed in bridge positions and towards the gold cluster when O2 is adsorbed on top of Au atoms, and both the adsorption energy and the O-O bond length of adsorbed oxygen increase when the amount of electronic charge on O2 increases. On the other hand, we studied the adsorption of an O2 molecule on doped MAu(n)+ clusters, leading to the formation of (MAu(n)O2+) ad complexes with different equilibrium configurations. The highest adsorption energy was obtained when both atoms of O2 bind on top of the M impurity, and it is larger for Ti doped clusters than for Fe doped clusters, showing an odd-even effect trend with size n, which is opposite for Ti as compared to Fe complexes. For those adsorption configurations of (MAu(n)O2+) ad involving only Au sites, the adsorption energy is similar to or smaller than that for similar configurations of Au(n)+1O2 + complexes. However, the highest adsorption energy of (MAu(n)O2+) ad is higher than that for (Au(n)+1O2+) ad by a factor of approximately 4.0 (1.2) for M = Ti (M = Fe). The trends with size n are rationalized in terms of O-O and O-M bond distances, as well as charge transfer between oxygen and cluster substrates. The spin multiplicity of those (MAu(n)O2+) ad complexes with the highest O2 adsorption energy is a maximum (minimum) for M = Fe (Ti), corresponding to parallel (anti-parallel) spin coupling of MAu(n)+ clusters and O2 molecules. Finally, we obtained the minimum energy equilibrium structure of complexes (Au(n)O2+) dis and (MAu(n)O2+) dis containing two separated O atoms bonded at different sites of Au(n)+ and MAu(n)+ clusters, respectively. For (MAu(n)O2 (+)) dis, the equilibrium configuration with the highest adsorption energy is stable against separation in MAu(n)+ and O2 fragments, respectively. Instead, for (Au(n)O2+) dis, only the complex n = 6 is stable against separation in Au(n)+ and O2 fragments. The maximum separation energy of (MAu(n)O2+) dis is higher than the O2 adsorption energy of (MAu(n)O2+) ad complexes by factors of approximately 1.6 (2.5), 1.6 (1.7), 1.5 (2.4), 1.5 (1.3), and 1.6 (1.8) for M = Ti (Fe) complexes in the range n = 3-7, respectively.  相似文献   

15.
Density functional calculations within the generalized gradient approximation have been used to investigate the lowest energy electronic and geometric structures of neutral, cationic, and anionic Pd(n) (n=1-7) clusters in the gas phase. In this study, we have examined three different spin multiplicities (M=1, 3, and 5) for different possible structural isomers of each neutral cluster. The calculated lowest energy structures of the neutral clusters are found to have multiplicities, M=1 for Pd(1), Pd(3), Pd(5), Pd(6), and Pd(7), while M=3 for Pd(2) and Pd(4). We have also determined the lowest energy states of cationic and anionic Pd(n) (n=1-7) clusters, formed from the most stable neutral clusters, in three spin multiplicities (M=2, 4, and 6). Bond length, coordination number, binding energy, fragmentation energy, bond dissociation energy, ionization potential, electron affinity, chemical hardness, and electric dipole moment of the optimized clusters are compared with experimental and other theoretical results available in the literature. Based on these criteria, we predict the four-atom palladium cluster to be a magic-number cluster.  相似文献   

16.
The adsorption properties of a single CO molecule on Sc(n) (n=2-13) clusters are studied by means of a density functional theory with the generalized gradient approximation. Two adsorption patterns are identified. Pattern a (n=3, 4, 6, 8, 11, and 12), CO binds to hollow site while Pattern b (n=5, 7, 9, 10, and 13), CO binds to bridge site accompanied by significantly lengthening of the Sc-Sc bond. The adsorption energy exhibits clear size-dependent variation and odd-even oscillation for n<10 and reach the peak at n=5, 7, and 9, implying their high chemical reactivity. Similar variations are noted in C-O bond length, vibrational frequency, and charge transferred between CO and the clusters. This can be understood in light of the adsorption pattern, the atomic motif, and the relative stability of the bare Sc clusters. Compared with the free Sc clusters, the magnetic nature remains upon adsorption except n=2, 4, 12, and 13. Particularly, the moments of n=13 reduce significantly from 19 to 5 micro(B), implying the adsorption plays an attenuation influence on the magnetism of the cluster.  相似文献   

17.
Electronic and structural properties of a series of tri-tungsten oxide clusters, W3On- and W3On (n=7-10), are investigated using photoelectron spectroscopy and density functional theory (DFT) calculations. Both W 5d and O 2p detachment features are observed for n=7-9, whereas only detachment features from O 2p-type orbitals are observed for W3O10- at high electron binding energies (>7 eV). A large energy gap (approximately 3.4 eV) is observed for the stoichiometric W3O9 cluster, which already reaches the bulk value, suggesting that W3O9 can be viewed as the smallest molecular model for bulk WO3. DFT calculations are carried out to locate the most stable structures for both the anion and neutral clusters; time-dependent DFT method is used to predict the vertical detachment energies and to compare with the experimental data. It is shown that W3O9 possesses a D3h structure, in which each W atom is tetrahedrally coordinated with two bridging O atoms and two terminal O atoms. W3O8 and W3O7 can be viewed as removing one and two terminal O atoms from W3O9, respectively, whereas W3O1) can be viewed as replacing a terminal O in W3O9 by a peroxo O2 unit. We show that W3O8 contains a localized W4+ site, which can readily react with O2 to form the W3O10 clusters with a calculated O2 adsorption energy of -78 kcal/mol. It is suggested that the W3O8 cluster can be viewed as a molecular model for O-deficient site in tungsten oxides.  相似文献   

18.
Ab initio and Density Functional Theory (DFT) calculations have been carried out for zinc-water clusters Zn(n)-(H2O)(m) (n = 1-32 and m = 1-3, where n and m are the numbers of zinc atoms and water molecules, respectively) to elucidate the structure and electronic states of the clusters and the interaction of zinc cluster with water molecules. The binding energies of H2O to zinc clusters were small at n = 2-3 (2.3-4.2 kcal mol(-1)), whereas the energy increased significantly in n = 4 (9.0 kcal mol(-1)). Also, the binding nature of H2O was changed at n = 4. The cluster size dependency of the binding energy of H2O accorded well with that of the natural population of electrons in the 4p orbital of the zinc atom. In the larger clusters (n > 20), it was found that the zinc atoms in surface regions of the zinc cluster have a positive charge, whereas those in the interior region have a negative charge with the large electron population in the 4p orbital. The interaction of H2O with the zinc clusters were discussed on the basis of the theoretical results.  相似文献   

19.
The reactions of Co n+ (n=1-18) with N2 are measured as a function of kinetic energy over a range of 0-15 eV in a guided ion beam tandem mass spectrometer. A variety of Co m +, Co m N+, and Co m N2+ (m相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号