首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental approach, electrospray mass spectrometry (ES-MS), and a theoretical approach employing computer modeling, have been used to characterize the interaction between small inorganic anions and neutral analyte molecules that form anionic adduct species in negative mode ES mass spectrometry. Certain anionic adducts of small saccharides (e.g., alpha-D-glucose, sucrose) have shown exceptional stability in ES mass spectra even when internal energies are raised at high "cone" voltages. Computer modeling studies reveal that multiple hydrogen bonding strengthens the interaction between these neutral molecules and the attaching anion. The equilibrium structures and stabilization energies of these anionic adducts have been evaluated by semi-empirical, ab initio, and density functional theory (DFT) methods. Chloride anion is found to be capable of forming "bridging" hydrogen bonds between monosaccharide rings of polysaccharides resulting in the stabilization of chloride adducts, thus reducing the tendency for the glycosidic bond to decompose. Moreover, the tendency for various hydroxyl hydrogens on saccharide molecules to dissociate in the form of HA (A-, anion) during decomposition of anionic adducts, thereby forming [M - H]-, has also been evaluated by computer modeling.  相似文献   

2.
The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M?+?anion](-) adducts of these steroids revealed that fluoride adduct [M?+?F](-) precursors first lose HF to produce [M - H](-) and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d(4)-pregnenolone, are also discussed.  相似文献   

3.
Eleven different anionic species were able to form adducts with neutral oligosaccharides at low cone voltage in negative ion mode electrospray mass spectrometry. Among them, fluoride and acetate have the ability to significantly enhance the absolute abundance of [M - H](-) for neutral oliogosaccharides, which otherwise have low tendencies to deprotonate due to the lack of a highly acidic group. Evidence shows that the source of high abundances of [M - H](-) for neutral oligosaccharides arises from the decomposition of [M + F](-) and [M + Ac](-) with neutral losses of HF and HAc, respectively. The chloride adducts have the best stability among all the adduct species investigated, and chloride adducts consistently appeared in higher abundances relative to [M - H](-). In tandem mass spectrometry (ES-MS/MS) experiments, upon collision induced dissociation (CID), F(-) and Ac(-) adducts gave purely analyte-related product ions, i.e., no detection of the attaching anion and no incorporation of these anions into decomposition products. Cl(-) adducts produced both Cl(-) and analyte-related product ions. For the above three anions, CID of adduct species may be used for structural determination of neutral oligosaccharides because, in each case, structurally-informative fragment ions were produced. In the presence of F(-) and Ac(-), simultaneous detection of acidic and neutral oligosaccharides was achieved, because the problem of the presence of an acidic group that can impede the deprotonation of a neutral oligosaccharide was minimized. The ratio of Cl(-):non-Cl-containing product ions obtained in CID spectra of chloride adducts of disaccharides was used to differentiate anomeric configurations of disaccharides. Density functional theory (DFT) was employed to evaluate the optimized structures of chloride adducts of disaccharides, and it was found that chloride anions favor close contact with the hydrogen from the anomeric hydroxyl group. Multiple hydrogen bonding further stabilizes the chloride adduct.  相似文献   

4.
Arginine forms a stable noncovalent anionic salt bridge complex with DP (a crown ether which contains two endocyclic dialkylhydrogenphosphate esters). Abundant adduct formation with DP is observed for complexes with arginine, YAKR, HPPGFSPFR, AAKRKAA, RR, RPPGFSPFR, RYLGYL, RGDS, and YGGFMRGL in electrospray ionization mass spectrometry (ESI-MS) experiments. DFT calculations predict a hydrogen bonded salt bridge structure with a protonated guanidinium flanked by two deprotonated phosphates to be the lowest energy structure. Dissociation of DP/peptide adducts reveals that, in general, the relative gas phase acidity of a peptide is dependent on peptide length, with longer peptides being more acidic. In particular, peptides that are six residues or more in length can stabilize the deprotonated C-terminus by extensive hydrogen bonding with the peptide backbone. Dissociation of DP/peptide complexes often yields the deprotonated peptide, allowing for the facile formation of anionic peptides that otherwise would be difficult to generate in high abundance. Although DP has a preference for binding to arginine residues in peptides, DP is also observed to form less abundant complexes with peptides containing multiple lysines. Lys-Xxx-Lys and Lys-Lys sequences form low abundance anionic adducts with DP. For example, KKKK exclusively forms a double adduct with one net negative charge on the complex.  相似文献   

5.
The retrospective detection and identification of degradation products of chemical warfare agents are of immense importance in order to prove their spillage and use. A highly sensitive liquid chromatography/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method--using an imidazolium-based tricationic reagent--was developed for the detection and identification of the anionic degradation products of nerve agents. A commercially available solution of 1,3-imidazolium-bis-(1-hexylbenzylimidazolium) trifluoride (IBHBI) formed adducts with alkylphosphonic acids (APAs), allowing detection of the APAs by positive mode ESI-MS. Tandem mass spectrometry was used for the unambiguous identification of the APAs. Parameters influencing the formation and stability of these adduct during mass spectrometric analysis, such as solvent composition, concentration of IBHBI, effect of pH and interferences by salts, were optimized. The absolute limits of detection (0.1 ng) for achieved for the APAs were better than those previously reported, and linear dynamic ranges of 10-2000 ng mL(-1) were achieved. The method was repeatable with a relative standard deviation ≤7.3%. APAs present in aqueous samples provided by the Organization for the Prohibition of Chemical Weapons during the 22(nd) and 24(th) Official Proficiency tests were detected and identified as IBHBI adducts. The added advantage of this method is that low-mass analytes are detected at higher mass, thus obviating the problem with background noise at low mass.  相似文献   

6.
The analysis of several neutral drugs, mephenesin, guaifenesin, simvastatin, podophyllotoxin and inositol, was accomplished by negative ion electrospray ionization mass spectrometry (ESI-MS) using adduct formation with three different halide ions. The fluoride, chloride and bromide adducts of the selected drugs exhibited intense signals in negative ion ESI. Under collision-induced dissociation, the major product ions of bromide and chloride adducts were the nonspecific bromide and chloride anions, respectively. In contrast, fluoride adducts produced strong [M--H](-) ions as well as product ions with good intensity. Fluoride attachment liquid chromatography/negative ion electrospray tandem mass spectrometry (LC/ESI-MS/MS) was applied to the analysis of the selected neutral drugs in human plasma. Detection limits in the range of 0.025-0.05 ng/mL were achieved using 0.5 mL plasma. Good linearity was observed for each of the drugs examined in human plasma over the range of 0.05-50 ng/mL.  相似文献   

7.
The high explosives trinitrotoluene, nitroglycerine, pentaerythritol tetranitrate and hexahydro-1,3,5-trinitro-1,3,5-triazine are efficiently ionised under negative ion atmospheric pressure chemical ionisation (APCI) conditions. The limit of detection is improved, in some cases by several orders of magnitude, by complexation with chlorine demonstrating this to be a highly suitable method for enhancing the detection capabilities for explosives. The spectra produced from introduction of the analytes in a liquid matrix, with and without chlorine present, contain a number of ions that arise through secondary processes including breakdown and adduct formation. Sample introduction into an APCI source in air, via a heated-plate inlet with a supplementary feed of dichloromethane, produces improved response for the chloride adducts of the analytes and minimises their decomposition during analysis. The tandem mass spectra produced from the chloride adducts are simple. Optimisation of the trapping parameters of the ion trap detector enhances selected transitions, yields highly reproducible spectra and improves the limits of detection for MS/MS analysis.  相似文献   

8.
The development of rapid, efficient, and reliable detection methods for the characterization of energetic compounds is of high importance to security forces concerned with terrorist threats. With a mass spectrometric approach, characteristic ions can be produced by attaching anions to analyte molecules in the negative ion mode of electrospray ionization mass spectrometry (ESI‐MS). Under optimized conditions, formed anionic adducts can be detected with higher sensitivities as compared with the deprotonated molecules. Fundamental aspects pertaining to the formation of anionic adducts of 1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocane (HMX), 1,3,5‐trinitro‐1,3,5‐triazinane (RDX), pentaerythritol tetranitrate (PETN), nitroglycerin (NG), and 1,3,5‐trinitroso‐1,3,5‐triazinane energetic (R‐salt) compounds using various anions have been systematically studied by ESI‐MS and ESI tandem mass spectrometry (collision‐induced dissociation) experiments. Bracketing method results show that the gas‐phase acidities of PETN, RDX, and HMX fall between those of HF and acetic acid. Moreover, PETN and RDX are each less acidic than HMX in the gas phase. Nitroglycerin was found to be the most acidic among the nitrogen‐rich explosives studied. The ensemble of bracketing results allows the construction of the following ranking of gas‐phase acidities: PETN (1530‐1458 kJ/mol) > RDX (approximately 1458 kJ/mol) > HMX (approximately 1433 kJ/mol) > nitroglycerin (1427‐1327.8 kJ/mol).  相似文献   

9.
Isoprene (2-methylbuta-1,3-diene) is a multi-site carcinogen in rodents. To evaluate the role of the diepoxide metabolite (1,2:3,4-diepoxy-2-methylbutane) in carcinogenesis, measurements of in vivo doses of the diepoxide are needed. The in vivo dose may be inferred from levels of reaction products with hemoglobin (Hb adducts). This report presents in vitro studies of the adduct formation by the diepoxide of isoprene with valinamide and oligopeptides as model compounds of N-terminal valines in hemoglobin (Hb). In the reaction with valinamide it was shown that isoprene diepoxide forms as the main product a ring-closed adduct, which is a pyrrolidine derivative [N,N-(2,3-dihydroxy-2-methyl-1,4-butadiyl)valinamide, MPyr-Val]. The analysis was performed by gas chromatography/mass spectrometry (GC/MS) (EI and PICI) after acetylation. The ring-closed adduct was also identified by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) as the main product in the reaction between isoprene diepoxide and standard hepta- or (2H8)octapeptides, corresponding to the N-terminal peptides of the alpha-chains in mouse and rat Hb. These peptides, alkylated with isoprene diepoxide, to be used as internal standards and calibration standards for quantification of MPyr-adduct levels in vitro and in vivo, were analyzed with respect to the degree of MPyr-alkylation by two independent methods, amino acid analysis and HPLC-UV; similar results were obtained using these methods. A method for measurement of Hb adducts as modified peptides, used earlier to measure a similar adduct to N-terminal valines in Hb from the diepoxide of 1,3-butadiene, has in the present work been tested for application to isoprene diepoxide. The method is based on tryptic degradation of globin and LC/ESI-MS analysis of N-terminal Pyr-heptapeptides of the Hb alpha-chain enriched by HPLC. MPyr-adduct levels in isoprene diepoxide alkylated hemolysate from mouse erythrocytes incubated with different concentrations of isoprene diepoxide (2 and 10 mM) for 1 h were quantified. The adduct level was about 50 nmol/g alpha-chain Hb per mM x h. From the adduct levels the rate constant of isoprene diepoxide for reaction with N-terminal valine was calculated to be about 1.6 times faster than for diepoxybutane.  相似文献   

10.
采用硅烷化方法,并用石英毛细管柱气相色谱与双聚焦质谱仪组成的GC/MS联用系统,首次成功地分析鉴别了六种自由基的PBN加合物,总结了这些自旋加合物的断裂规律。实验结果表明,硅烷化结合GC/MS和自旋捕捉ESR联用技术是确定活泼自由基的一种有效方法。  相似文献   

11.
Silylated germylene–PMe3 adducts exchange their phosphane moiety smoothly for an N‐heterocyclic carbene or isocyanide species to form their respective base adducts. Reaction of the silylated germylene–PMe3 adducts with monosubstituted alkynes produce germylene adducts with the alkyne inserted into a Ge?Si bond. A computational study of this process provides evidence for the initial formation of a germirene, which rearranges to a vinylgermylene species. The thermodynamic driving force for this reaction is provided by subsequent adduct formation with PMe3. Reaction of the PMe3 adduct of bis[(trimethylsilyl)silyl]germylene with disubstituted alkynes leads to the formation of stable germirenes, which can be isomerized further to silagermetes.  相似文献   

12.
Electrospray ionization (ESI) tandem mass spectrometry (MS) has simplified analysis of phospholipid mixtures, and, in negative ion mode, permits structural identification of picomole amounts of phospholipid species. Collisionally activated dissociation (CAD) of phospholipid anions yields negative ion tandem mass spectra that contain fragment ions representing the fatty acid substituents as carboxylate anions. Glycerophosphocholine (GPC) lipids contain a quaternary nitrogen moiety and more readily form cationic adducts than anionic species, and positive ion tandem mass spectra of protonated GPC species contain no abundant ions that identify fatty acid substituents. We report here that lithiated adducts of GPC species are readily formed by adding lithium hydroxide to the solution in which phospholipid mixtures are infused into the ESI source. CAD of [MLi+] ions of GPC species yields tandem mass spectra that contain prominent ions representing losses of the fatty acid substituents. These ions and their relative abundances can be used to assign the identities and positions of the fatty acid substituents of GPC species. Tandem mass spectrometric scans monitoring neutral losses of the head-group or of fatty acid substituents from lithiated adducts can be used to identify GPC species in tissue phospholipid mixtures. Similar scans monitoring parents of specific product ions can also be used to identify the fatty acid substituents of GPC species, and this facilitates identification of distinct isobaric contributors to ions observed in the ESI/MS total ion current.  相似文献   

13.
The chelation potential of highly lipophilic C-dimethylthiolated monocyclic beta-lactams was examined using electrospray ionization mass spectrometry (ESI-MS). The metal salts NaCl, KCl, CaCl2, ZnCl2, Cu(NO3)2, CdSO4, MnCl2, and Mg(NO3)2 were used for the analysis. The K+ adducts of the compounds studied were more responsive in ESI analysis, compared to their Na+ adducts, regardless of the oxidation state of the sulfur (in the methylthio or the sulfone groups) and the type of the group adjacent to the lactam carbonyl. Opening of the beta-lactam ring, leading to formation of a chargeable N-atom, had little to no effect on the K+ adduct formation. Interactions of the methylthio group with the divalent zinc ion were also observed.  相似文献   

14.
Six different anionic species (fluoride, chloride, bromide, iodide, nitrate, and acetate) are tested for their abilities to form anionic adducts with neutral oligosaccharides that are detectable by MALDI-TOF mass spectrometry. Fluoride and acetate cannot form anionic adducts with the oligosaccharides in significant yields. However, bromide, iodide, and nitrate anionic adducts consistently appear in higher abundances relative to [M - H](-), just like the highly stable chloride adducts. Post-source decay (PSD) decompositions of Br(-), I(-), and NO(3)(-) adducts of oligosaccharides provide no structural information, i.e., they yield the respective anions as the main product ions. However, determination of linkage types is achieved by analysis of structurally-informative diagnostic peaks offered by negative ion PSD spectra of chloride adducts of oligosaccharides, whereas the relative peak intensities of pairs of diagnostic fragment ions allow differentiation of anomeric configurations of glycosidic bonds. Thus, simultaneous identification of the linkage types and anomeric configurations of glycosidic bonds is achieved. Our data indicate that negative ion PSD fragmentation patterns of chloride adducts of oligosaccharides are mainly determined by the linkage types. Correlation may exist between the linkage positions and fragmentation mechanisms and/or steric requirements for both cross-ring and glycosidic bond fragmentations. PSD of the chloride adducts of saccharides containing a terminal Glcalpha1-2Fru linkage also yields chlorine-containing fragment ions which appear to be specifically diagnostic for a fructose linked at the 2-position on the reducing end. This also allows differentiation from saccharides with a 1-1 linked pyranose on the same position.  相似文献   

15.
For the quantification of Melphalan DNA adducts, an analytical approach based on the detection of phosphorus using liquid chromatography combined with inductively-coupled-plasma mass spectrometry (ICP-MS) was developed. In reaction mixtures of native 2'-deoxynucleotides-5'-monophosphates and Melphalan, which were separated using reversed phase chromatography, phosphate adducts were found as the most abundant modifications. Besides the phosphate adducts, several base alkylated adducts were observed. In calf thymus DNA incubated with Melphalan and enzymatically digested using Nuclease P1, the phosphate adducts as well as monoalkylated dinucleotides were found. The most abundant single Melphalan adduct observed in DNA was a ring-opened adenosine monophosphate. Some dinucleotide adducts and the adenosine adduct were identified using electrospray ionization mass spectrometry (ESI-MS).  相似文献   

16.
There are many methods available to detect and positively identify either organic or inorganic explosives separately, however no one method has been developed which can detect both types of explosive species simultaneously from a single sample. In this work, a unique coupled-chromatographic system is reported for the simultaneous determination of both organic and inorganic explosive species and is used for pre-blast analysis/identification purposes. This novel approach is based on the combination of reversed-phase high performance liquid chromatography and ion chromatography which allows trace levels of organic and inorganic explosives to be determined simultaneously from a single sample. Using this procedure, a 20 min reversed-phase separation of organic explosives is coupled to a 16 min ion-exchange separation of anions present in inorganic explosives, providing a complete pre-blast analysis/identification system for the separation and detection of a complex mixture containing organic and/or inorganic explosive species. The total analysis time, including sufficient column re-equilibration between runs, was <25 min using the coupled system. By this method, the minimum resolution for the organic separation was 1.16 between nitroglycerin and tetryl and the detection limits ranged from 0.31 mg L(-1) for cyclotetramethylene tetranitramine (HMX) and 1.54 mg L(-1) for pentaerythrite tetranitrate (PETN), while the minimum resolution for the inorganic separation was 0.99 between azide and nitrate, and the detection limits ranged from 7.70 μg L(-1) for fluoride and 159.50 μg L(-1) for benzoate.  相似文献   

17.
Glycation of beta-lactoglobulin (beta-Lg) with either lactose or galactose in a solid-state medium was monitored using gel electrophoresis techniques and liquid chromatography coupled to electrospray ionisation mass spectrometry (LC/ESI-MS). The kinetics of glycation monitored by SDS polyacrylamide gel electrophoresis showed a molecular weight increase over time of the beta-Lg bands for both sugars, but no significant amounts of aggregated proteins were observed. The isoelectric point of the protein, observed by isoelectric focusing gel electrophoresis, was dramatically affected by galactosylation. LC/MS measurements of beta-Lg variants A and B, over the whole glycation reaction time, showed a larger extent of glycation with galactose (from 4 up to 22 adducts) as compared with lactose (from 0 up to 14 adducts), and confirmed that early Maillard reaction products were the main species observed. Based on the relative abundances obtained from the deconvoluted mass spectra after a 8 h 15 min incubation time at 60 degrees C, the mean values of lactose and galactose molecules bound to the protein species were calculated to be 10.4 and 17.9, and 10.5 and 18.6, for variants A and B, respectively. Furthermore, the charge state distribution data obtained by ESI-MS was studied using different methanol percentages, and indicated that adduct formation with lactose, but more significantly galactose, tends to improve the stability properties of the native protein towards denaturation.  相似文献   

18.
The “Best Match” model has been extended to account for the role that Na+/H+ exchange plays on anion attachment in negative ion electrospray. Without any Na+/H+ exchange on (Glu) fibrinopeptide B, the higher basicity anions F? and CH3COO? can hardly form observable adducts; however, after multiple Na+/H+ exchanges, adduct formation is enabled. Moreover, dissociation pathways of CF3COO? adducts with singly deprotonated peptides that have undergone 0 to 3 Na+/H+ exchanges exhibit a shift in CID product ions from losing predominately CF3COOH (case of 0 Na+/H+ exchanges) to losing predominately CF3COO? (case of 3 Na+/H+ exchanges). These phenomena can be rationalized by considering that Na+ cations exchange at, and serve to “block”, the most acidic sites, thereby forcing implicated anions to attach to lower acidity protons. In addition to forming ion pairs with carboxylate groups, Na+ also participates in formation of tri-atomic ions of the form ANaA? during adduct dissociation. The fact that low gas-phase basicity (GB) anions preferentially form ANaA? species, even though high GB anions form more stable tri-atomic species, indicates that the monatomic ions were not in close contact in the initial adduct. The propensity for formation of stable anionic adducts is dependent on the degree of matching between anion GBs and GBapp of deprotonated sites on the peptide. The GBapp is raised dramatically as the charge state of the peptide increases via a through-space effect. The presence of Na+ on carboxylate sites substantially decreases the GBapp by neutralizing these sites, while slightly increasing the intrinsic GBs by an inductive effect.
Figure
?  相似文献   

19.
Many electron spin resonance (ESR) spectra of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) radical adducts from the reaction of organic hydroperoxides with heme proteins or Fe(2+) were assigned to the adducts of DMPO with peroxyl, alkoxyl, and alkyl radicals. In particular, the controversial assignment of DMPO/peroxyl radical adducts was based on the close similarity of their ESR spectra to that of the DMPO/superoxide radical adduct in conjunction with their insensitivity to superoxide dismutase, which distinguishes the peroxyl adducts from the DMPO/superoxide adduct. Although recent reports assigned the spectra suggested to be DMPO/peroxyl radical adducts to the DMPO/methoxyl adduct based on independent synthesis of the adduct and/or (17)O-labeling, (17)O-labeling is extremely expensive, and both of these assignments were still based on hyperfine coupling constants, which have not been confirmed by independent techniques. In this study, we have used online high performance liquid chromatography (HPLC or LC)/ESR, electrospray ionization-mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) to separate and directly characterize DMPO oxygen-centered radical adducts formed from the reaction of Fe(2+) with t-butyl or cumene hydroperoxide. In each reaction system, two DMPO oxygen-centered radical adducts were separated and detected by online LC/ESR. The first DMPO radical adduct from both systems showed identical chromatographic retention times (t(R) = 9.6 min) and hyperfine coupling constants (a(N) = 14.51 G, a(H)(beta) = 10.71 G, and a(H)(gamma) = 1.32 G). The ESI-MS and MS/MS spectra demonstrated that this radical was the DMPO/methoxyl radical adduct, not the peroxyl radical adduct as was thought at one time, although its ESR spectrum is nearly identical to that of the DMPO/superoxide radical adduct. Similarly, based on their MS/MS spectra, we verified that the second adducts (a(N) = 14.86 G and a(H)(beta) = 16.06 G in the reaction system containing t-butyl hydroperoxide and a(N) = 14.60 G and a(H)(beta) = 15.61 G in the reaction mixture containing cumene hydroperoxide), previously assigned as DMPO adducts of t-butyloxyl and cumyloxyl radical, were indeed from trapping t-butyloxyl and cumyloxyl radicals, respectively.  相似文献   

20.
Noncovalent adducts (TPPC@PAMAM) between meso-tetrakis(4-carboxyphenyl)porphyrin (TPPC) and polyamidoamine PAMAM dendrimer (generation 2.0) have been obtained by simply mixing the two components at different stoichiometric amount. The resulting species are readily soluble and stable in aqueous solution up to millimolar concentration. Electrostatic interactions between the anionic carboxylate groups of TPPC and the protonated amino groups of the PAMAM dendrimer play an important role in the stabilization of these adducts. UV/Vis absorption, steady state and time-resolved fluorescence emission and anisotropy measurements suggest the presence of equilibria involving different species as function of the [PAMAM]/[TPPC] ratio. At low ratios the observed spectroscopic behavior evidence the presence of H-aggregates, while at higher ratios well-defined species containing monomeric TPPC strongly interacting with the charged dendrimer are formed. Docking of the binary supramolecular adduct further supports the experimental results showing a favorable interaction with the porphyrin being completely included in the dendrimer. The interaction of the binary TPPC@PAMAM adduct (1/1 ratio) with calf-thymus DNA has been investigated through spectroscopic and photophysical techniques. All the experimental results point to the formation of a ternary complex between the binary adduct and the DNA backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号