首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molar heat capacities of twelve linear alkane-α,ω-diamides H2NOC-(CH2)(n-2)-CONH2, (n=2 to 12 and n=14) were measured by differential scanning calorimetry at T=183 to 323 K. Heat flow rate calibration of the Mettler DSC 30 calorimeter was carried out by using benzoic acid as reference material. The calibration was checked by determining the molar heat capacity of urea in the same temperature range as that of measurements. The molar heat capacities of alkane-α,ω-diamides increased in function of temperature and fitted into linear equations. Smoothed values of C p,m at 298.15 K displayed a linear increase with the number of carbon atoms. The C p,m contribution of CH2 group was (22.6±0.4) J K−1 mol−1, in agreement with our previous results concerning linear alkane-a,ω-diols and primary alkylamides as well as the literature data on various series of linear alkyl compounds. On leave from the Faculty of Chemistry, University of Craiova, Calea Bucureşti 165, Craiova 1100, Romania  相似文献   

2.
The concentration dependences of heat capacities of aqueous solutions of several amino acid and peptide derivatives of fullerene were measured by scanning differential calorimetry at 298 K. The heat capacities for the arginine, alanylalanine, and glycylvaline derivatives dissolved in water depend slightly on concentration. The concentration dependences of the heat capacities of aqueous solutions of the serine and alanine derivatives display extrema. The calculated contributions of hydration to the heat capacities of the dissolved fullerene derivatives have both positive and negative signs. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2202–2204, November, 1998.  相似文献   

3.
A general mathematical treatment for heat-flux differential scanning calorimetry is given. It combines equations derived for heat transfer in the calorimeter cell with an approach to the solidification of metal or alloy carried out in this type of instrument. The differences are discussed between temperature evolution, kinetics of latent heat and undercooling evolution within the sample, and temperature evolution, recorded signal and measured undercooling at the monitoring station.
Zusammenfassung Es wird ein allgemeine mathematische Behandlung von Wärmefluß-DSC gegeben. Es verbindet Gleichungen für den Wärmetransport in der Kalorimeterzelle mit einer Annäherung der Verfestigung von Metall oder Legierung, die in diesem Gerätetyp durchgeführt werden. Es werden die Unterschiede zwischen: Temperaturevolution, Kinetik latenter Wärme und Unterkühlungsevolution innerhalb der Probe und zwischen: Temperaturevolution, aufgezeichnetes Signal und gemessene Unterkühlung an der Monitorstation diskutiert.
  相似文献   

4.
Molar heat capacities (C p,m) of aspirin were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 383 K. No phase transition was observed in this temperature region. The polynomial function of C p,m vs. T was established in the light of the low-temperature heat capacity measurements and least square fitting method. The corresponding function is as follows: for 78 K≤T≤383 K, C p,m/J mol-1 K-1=19.086X 4+15.951X 3-5.2548X 2+90.192X+176.65, [X=(T-230.50/152.5)]. The thermodynamic functions on the base of the reference temperature of 298.15 K, {ΔH TH 298.15} and {S T-S 298.15}, were derived. Combustion energy of aspirin (Δc U m) was determined by static bomb combustion calorimeter. Enthalpy of combustion (Δc H o m) and enthalpy of formation (Δf H o m) were derived through Δc U m as - (3945.26±2.63) kJ mol-1 and - (736.41±1.30) kJ mol-1, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The low-temperature heat capacities of cyclohexane were measured in the temperature range from 78 to 350 K by means of an automatic adiabatic calorimeter equipped with a new sample container adapted to measure heat capacities of liquids. The sample container was described in detail. The performance of this calorimetric apparatus was evaluated by heat capacity measurements on water. The deviations of experimental heat capacities from the corresponding smoothed values lie within ±0.3%, while the inaccuracy is within ±0.4%, compared with the reference data in the whole experimental temperature range. Two kinds of phase transitions were found at 186.065 and 279.684 K corresponding solid-solid and solid-liquid phase transitions, respectively. The entropy and enthalpy of the phase transition, as well as the thermodynamic functions {H(T)-H 298.15 K} and {S (T)-S298.15 K}, were derived from the heat capacity data. The mass fraction purity of cyclohexane sample used in the present calorimetric study was determined to be 99.9965% by fraction melting approach. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
An investigation of the thermodynamical properties of polytridecanolactone (PTDL) was made with the aid of a differential scanning calorimeter (DSC). PTDL is a linear polyester and belongs to the polylactones, which have been poorly investigated. In this paper we contribute with specific heat capacity in the range 180-400 K, and melting and glass transition characteristics. Further, we present unique results corresponding to the effect of different cooling rates on crystallization temperatures and crystallization energies. PTDL has a melting temperature of 350 K, and a glass transition at about 237 K. The crystallization results show that PTDL crystallizes easily, with a crystallization degree of about 80%. In addition, the crystallization energy decreases with increasing cooling rate, and levels out at a constant value at higher cooling rates. The crystallization temperature, on the other hand, shows an increasing sensitivity of cooling rate, where the supercooling is increasing more rapidly at higher cooling rates. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
Light metal alloys, as aluminium- and titanium based alloys, are of great interest to aerospace industry but thermodynamic information, mainly heat capacity, is often missing. Then we measured on heating the heat content of seven industrial titanium alloys from room temperature to 600°C with the help of a high-temperature Calvet calorimeter (drop method). Their heat capacities were deduced by derivation of the enthalpy with respect to temperature. The departures from Kopp-Neuman law were calculated.  相似文献   

8.
The absolute heat capacity and glass transition temperature (Tg) of unsupported ultrathin films were measured with differential scanning calorimetry with the step-scan method in an effort to further examine the thermodynamic behavior of glass-forming materials on the nanoscale. Films were stacked in layers with multiple preparation methods. The absolute heat capacity in both the glass and liquid states decreased with decreasing film thickness, and Tg also decreased with decreasing film thickness. The magnitude of the Tg depression was closer to that observed for films supported on rigid substrates than that observed for freely standing films. The stacked thin films regained bulk behavior after the application of pressure at a high temperature. The effects of various preparation methods were examined, including the use of polyisobutylene as an interleaving layer between the polystyrene films. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3518–3527, 2006  相似文献   

9.
This paper describes some examples of the use of differential scanning calorimetry (DSC) in providing information for advanced solidification processing of metals and alloys. Spray forming, squeeze casting, grain refinement and crystallization of amorphous alloys are all discussed. DSC measurements are shown to be valuable for testing kinetic theories of nucleation and growth, and validating solidification process models.  相似文献   

10.
通过小样品精密自动绝热量热计测定了自己合成并提纯的苯氧威 (C17H19NO4) 在79 ~ 360 K温区的低温摩尔热容。量热实验发现, 该化合物在320 ~ 330 K温区, 有一固 - 液熔化相变过程, 其熔化温度为(326.31±0.14)K, 摩尔熔化焓、摩尔熔化熵及化合物的纯度分别为:(26.98±0.04) kJ• mol-1和(82.69 0.09)J•mol-1•K-1和 (99.53±0.01 )%。并计算出了80-360 K的热力学参数。用分步熔化法得到绝对纯化和物的熔点为326.60±0.06 K。用差示扫描量热 (DSC) 技术对该物质的固-液熔化过程作了进一步研究,结果与绝热量热法一致。  相似文献   

11.
The influence of solution composition (pH, salts, and chelant) on the thermostability of horse liver alcohol dehydrogenase was studied by differential scanning calorimetry (DSC) in the pH range from7.51 to 9.50 and showing the enzyme catalytic activity. The experiments demonstrated that the effect of increasing pH on the heat denaturation temperature of the enzyme was slight, but the denaturation enthalpy was considerably increased, indicating the enzyme conformation alteration by changing pH and the presence of enthalpy-entropy compensation. The effect of ionic strength on thermostability was not noticeable, i.e., the electrostatic interactions were not a dominant factor for the thermostability. The anions Cl and SCN imposed diverse influence upon the enzyme thermostability, and SCNcan reduce the thermostability considerably. The chelant 1,10-phenanthroline, which can reversibly bind together with the zinc ions functioning the catalytic action in the enzyme molecules, increases the thermostability considerably. The hydration of the enzyme plays an important role to the thermostability. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The slow isothermal crystallization of concentrated amorphous starch systems is measured by Modulated Differential Scanning Calorimetry (MDSC). It can be followed continuously by the evolution (stepwise decrease) of the MDSC heat capacity signal (Cp), as confirmed with data from X-ray diffractometry, Dynamic Mechanical Analysis, Raman spectroscopy, and conventional Differential Scanning Calorimetry. Isothermal MDSC measurements enable a systematic study of the slow crystallization process of a concentrated starch system, such as a pregelatinized waxy corn starch with 24 wt % water and 76 wt % starch. After isothermal crystallization, a broad melting endotherm with a bimodal distribution is observed, starting about 10°C beyond the crystallization temperature. The bulk glass transition temperature (Tg) decreases about 15°C during crystallization. The isothermal crystallization rate goes through a maximum as a function of crystallization time. The maximum rate is characterized by the time at the local extreme in the derivative of Cp (tmax), or by the time to reach half the decrease in Cp (t1/2). Both tmax and t1/2 show a bell-shaped curve as a function of crystallization temperature. The temperature of maximum crystallization rate, for the system studied, lies as high as 75°C. This is approximately 65°C above the initial value of Tg. Normalized Cp curves indicate the temperature dependence of the starch crystallization mechanism. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2881–2892, 1999  相似文献   

13.
比热容是物质的特性参数之一。测定比热容的经典方法通常是采用各种类型的精密量热计,该方法测量精度高,但操作繁琐,费时费力。采用差示扫描量热法(DSC)测定比热容精度可达到0.3%,具有速度快、试样用量少等优点。 本文用DSC法测量人工晶体3-甲基-4-硝基氧化吡啶(POM)在320~380K之间的比热容,以往尚无文献报道。  相似文献   

14.
The molar heat capacities C p,m of 2,2-dimethyl-1,3-propanediol were measured in the temperature range from 78 to 410 K by means of a small sample automated adiabatic calorimeter. A solid-solid and a solid-liquid phase transitions were found at T-314.304 and 402.402 K, respectively, from the experimental C p-T curve. The molar enthalpies and entropies of these transitions were determined to be 14.78 kJ mol−1, 47.01 J K−1 mol for the solid-solid transition and 7.518 kJ mol−1, 18.68 J K−1 mol−1 for the solid-liquid transition, respectively. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 310 K, C p,m/(J K−1 mol−1)=117.72+58.8022x+3.0964x 2+6.87363x 3−13.922x 4+9.8889x 5+16.195x 6; x=[(T/K)−195]/115. In the temperature range of 325 to 395 K, C p,m/(J K−1 mol−1)=290.74+22.767x−0.6247x 2−0.8716x 3−4.0159x 4−0.2878x 5+1.7244x 6; x=[(T/K)−360]/35. The thermodynamic functions H TH 298.15 and S TS 298.15, were derived from the heat capacity data in the temperature range of 80 to 410 K with an interval of 5 K. The thermostability of the compound was further tested by DSC and TG measurements. The results were in agreement with those obtained by adiabatic calorimetry.  相似文献   

15.
In order to observe more directly the structural organization of water molecules around a non-polar molecule in an aqueous solution, heat capacity differences between two kinds of solutions (solution I and II) of quaternary ammonium salts were measured. In the solution I stable water structure was retained as much as possible and in the solution II water structure was destroyed either by heating to high temperatures or by irradiating with ultrasonic waves. It was found that the heat capacity differences ((Cp)II-(Cp)I) were slightly positive and its maximum values corresponded to 7-8 percent of the heat capacity of pure water itself. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The heat capacity of crystalline α-platinum dichloride was measured for the first time in the temperature intervals from 11 to 300 K (vacuum adiabatic microcalorimeter) and from 300 to 620 K (differential scanning calorimetry). In the 300–620 K temperature interval, the C° p values for α-PtCl2 (cr) coincide with the heat capacity of CrCl2 (cr) within the limits of experimental error, which made it possible to estimate the heat capacity of α-PtCl2 (cr) at higher temperatures. The approximating equation of the temperature dependence of the heat capacity in the interval from 298 to 900 K C° p (±0.8) = 63.5 + 21.4·10−3 T + 0.883·105/T 2 (J mol−1 K−1) was derived using the experimental values, as well as the literature data on the heat capacity of CrCl2 (cr). For the standard conditions, the C° p,298.15 and S°298.15 values are 70.92±0.08 and 100.9±0.33 J mol−1 K, respectively; H°298.15H°0 = 14 120±42 J mol−1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1136–1138, June, 2008.  相似文献   

17.
Rare-earth orthoferrites, RFeO3, and rare-earth iron garnets (RIGs) R3Fe5O12 (R=rare-earth elements) were prepared by citrate-nitrate gel combustion method and characterized by X-ray diffraction method. Isobaric molar heat capacities of these oxides were determined by using differential scanning calorimetry from 130 to 860 K. Order-disorder transition temperatures were determined from the heat capacity measurements. The Néel temperatures (TN) due to antiferromagentic to paramagnetic transitions in orthoferrites and the Curie temperatures (TC) due to ferrimagnetic to paramagnetic transitions in garnets were determined from the heat capacity data. Both TN and TC systematically decrease with increasing atomic number of R across the series. Lattice, electronic and magnetic contributions to the total heat capacity were calculated. Debye temperatures as a function of absolute temperature were calculated for these compounds. Thermodynamic functions like , , Ho, Go, , , , , and have been generated for the compounds RFeO3(s) and R3Fe5O12(s) based on the experimental data obtained in this study and the available data in the literature.  相似文献   

18.
An outline for the data analysis of single-run heat capacity measurments by dual sample DSC is presented with the following features: 1. Heat flow correction by subtracting the contribution due to the sample pan, including correction for mismatched pan masses. 2. Heat flow and temperature correction with a nonlinear temperature calibration, temperature lag correction, and heating rate correction. 3. Calculation of the cell constants for both cell positions and evaluation of the asymmetry factor between cell positions A and B. 4. Heat capacity calibration and calculation with slope and asymmetry correction. 5. Calculation of heat capacity for multiple runs. 6. Data curve fitting for heat capacity.This work was supported by the Division of Materials Research, National Science Foundation, Polymers Program, Grant # DMR 8818412 and the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc. Thanks are given to TA Instruments, Inc. (New Castle, DE) for providing the commercial heat capacity software and helping with the acquisition of the calorimeter.  相似文献   

19.
Modulated temperature DSC (MTDSC) has been performed on phenyl glycidyl ether (PGE) + aniline in order to obtain the non-reversing heat flow and heat capacity profiles simultaneously in a wide range of cure temperatures and mixture compositions. The epoxy (PGE) conversion as determined from the former signal corresponds to the one obtained from separate high performance liquid chromatography (HPLC), while the latter signal contains information on the individual reaction steps. Optimized kinetic parameters using a mechanistic approach, including both reactive and non-reactive complexes can successfully simulate MTDSC measurements for isothermal reaction temperatures ranging from 50 to 120 °C and for non-isothermal experiments with mixture compositions corresponding to concentrations of aniline in a range from 1.68 to 6.53 mol kg−1. Concentration profiles for three mixture compositions as obtained from HPLC are also well predicted. The activation energies for the primary amine and secondary amine-epoxy reaction catalyzed by hydroxyl groups are 50 and 52 kJ mol−1, respectively, while the initiation of the reaction corresponds to the primary amine-epoxy reaction catalyzed by primary amine groups with an activation energy of 72 kJ mol−1. A negative substitution effect can be calculated at 0.18 from the ratio of secondary amine to primary amine-epoxy reaction rate constants.  相似文献   

20.
We have employed high-resolution calorimetric techniques in order to investigate the unresolved issue of the existence of a nematic phase for the liquid crystal dodecylcyanobiphenyl. Various heating and cooling runs were performed on dodecylcyanobiphenyl samples of different origin and their analysis did not reveal any signature of a nematic phase. The calorimetric results are presented in detail and they are additionally supported by optical polarising microscopy observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号