首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field JJ  Durfee CG  Squier JA  Kane S 《Optics letters》2007,32(21):3101-3103
By replacing the dispersive element in a zero-dispersion pulse shaper with a grism, we have constructed a quartic-phase-limited pulse shaper. We demonstrate compensation of 4500 fs2 without the use of a dynamic element in the pulse shaping line, which is approximately the amount of dispersion induced by a typical multiphoton microscope. We also demonstrate that detuning the pulse shaper to compensate for quadratic phase induces negligible spatial chirp, thereby maintaining a high-quality focal spot for a microscopy setup.  相似文献   

2.
An acousto-optic pulse shaper has been used to characterize few-cycle pulses generated in a hollow-core fiber. A grism pair precompensates for the dispersion of the acousto-optic crystal, allowing the full pulse-shaping window to be used for replica generation rather than self-compensation. A 9.4 fs pulse was measured, the shortest ever measured with an acousto-optic pulse shaper, to our knowledge.  相似文献   

3.
A novel liquid crystal display (LCD) with 640 stripes was successfully implemented and investigated for femtosecond pulse shaping. As compared to previously used devices, the large active area allows for operation in high-power laser systems. The increased number of pixels greatly enlarges the manifold of accessible pulse modulations, making the device an ideal tool for coherent control experiments and optical information processing. Received: 1 February 2001 / Published online: 21 March 2001  相似文献   

4.
By using tailored pulse sequences from a novel, 1.5-microm direct space-to-time pulse shaper driving a high-speed photodetector, we have achieved, for the first time to our knowledge, millimeter-wave arbitrary waveform generation at center frequencies approaching 50 GHz. By appropriately designing the driving optical pulse sequences, we demonstrate the ability to synthesize strongly phase- and frequency-modulated millimeter-wave electrical signals on a cycle-by-cycle basis.  相似文献   

5.
We demonstrate that a pulse shaper is able to simultaneously act as an optical waveform generator and a short pulse characterization device when combined with an appropriate nonlinear element. We present autocorrelation measurements and their frequency resolved counterparts. We show that control over the carrier envelope phase allows continuous tuning between an intensity-like and an interferometric autocorrelation. By changing the transfer function other measurement techniques, for example STRUT, are easily realized without any modification of the optical setup. PACS 42.65.Re; 42.30.Lr; 42.30.Rx  相似文献   

6.
We demonstrate a simplified arrangement for spatiotemporal ultrashort pulse characterization called Hartmann-Shack assisted, multidimensional, shaper-based technique for electric-field reconstruction. It employs an acousto-optic pulse shaper in combination with a second-order nonlinear crystal and a Hartmann-Shack wavefront sensor. The shaper is used as a tunable bandpass filter, and the wavefronts and intensities of quasimonochromatic spectral slices of the pulse are obtained using the Hartmann-Shack wavefront sensor. The wavefronts and intensities of the spectral slices are related to one another using shaper-assisted frequency-resolved optical gating measurements, performed at particular points in the beam. This enables a three-dimensional reconstruction of the amplitude and phase of the pulse. We present some example pulse measurements and discuss the operating parameters of the device.  相似文献   

7.
Leaird DE  Weiner AM 《Optics letters》1999,24(12):853-855
We demonstrate femtosecond operation of a direct space-to-time pulse shaper in which there is direct mapping (no Fourier transform) between the spatial position of the masking function and the temporal position in the output waveform. We use this apparatus to generate trains of 20 pulses as an ultrafast optical data packet over an ~40-ps temporal window.  相似文献   

8.
9.
Leaird DE  Weiner AM 《Optics letters》2000,25(11):850-852
The dispersion properties of the direct space-to-time pulse shaper are investigated for the first time to our knowledge. We demonstrate that phase-front curvature of the input spatial profile leads to a chirp in the output temporal waveform, which one can compensate for by varying the separation between the pulse-shaping lens and slit. Furthermore, the output intensity profile remains invariant as the chirp is manipulated. These properties are fundamentally different than in the well-known Fourier-transform pulse shaper.  相似文献   

10.
We present a precise measurement of a weak radio frequency electric field with a frequency of ■3 GHz employing a resonant atomic probe that is constituted with a Rydberg cascade three-level atom, including a cesium ground state |6S(1/2)〉,an excited state |6P(3/2)〉, and Rydberg state |nD(5/2)〉. Two radio frequency(RF) electric fields, noted as local and signal fields, couple the nearby Rydberg transition. The two-photon resonant Rydberg electromagnetically induced transparency(Rydberg-EIT) is employed to directly read out the weak signal field having hundreds of k Hz difference between the local and signal fields that is encoded in the resonant microwave-dressed Rydberg atoms. The minimum detectable signal fields of ESmin= 1.36 ± 0.04 mV/m for 2.18 GHz coupling |68D(5/2)〉→ |69P(3/2)〉 transition and 1.33 ± 0.02 mV/m for 1.32 GHz coupling |80D(5/2)〉→ |81P(3/2)〉 transition are obtained, respectively. The bandwidth dependence is also investigated by varying the signal field frequency and corresponding -3 dB bandwidth of 3 MHz is attained. This method can be employed to perform a rapid and precise measurement of the weak electric field, which is important for the atom-based microwave metrology.  相似文献   

11.
Homodyne detection can dramatically enhance measurement sensitivity for weak signals. In nonlinear optical microscopy it can make accessible a range of novel, intrinsic, contrast like nonlinear absorption and nonlinear phase contrast. Here a compact and rapid pulse shaper is developed, implemented, and demonstrated for homodyne detection in nonlinear microscopy with high-repetition rate mode-locked femtosecond lasers. With this method we generate two-photon absorption (TPA) and self-phase modulation images of gold nanostars in biological samples. Simultaneous imaging of two-photon luminescence and TPA also enables us to produce two-photon quantum yield images.  相似文献   

12.
We propose and demonstrate a silicon-on-insulator(SOI) on-chip optical pulse shaper based on four-tap finite impulse response. Due to different width designs in phase region of each tap, the phase differences for all taps are controlled by an external thermal source, resulting in an optical pulse shaper. We further demonstrate optical arbitrary waveform generation based on the optical pulse shaper assisted by an optical frequency comb injection. Four different optical waveforms are generated when setting the central wavelengths at 1533.78 nm and 1547.1 nm and setting the thermal source temperatures at 23℃ and 33℃, respectively. Our scheme has distinct advantages of compactness, capability for integrating with electronics since the integrated silicon waveguide is employed.  相似文献   

13.
张军海  王平稳  韩煜  康崇  孙伟民 《物理学报》2018,67(6):60701-060701
共振线偏振光激发原子张量磁矩,本文理论研究在矢量磁场和射频场的共同作用下,张量磁矩进动的模型,求解刘维尔方程获得透射光时域完整解析解,包括直流、一次和二次谐波分量.研究发现:当进动的拉比频率Ω1/(22~(1/2))时,两谐波间的干涉效应使直流分量和一次谐波对称成分的单吸收峰劈裂成双峰,裂距((Ω~2+Ω~4-Ω~2-1)~(3/2))~(1/2),一次谐波反对称成分在共振处产生干涉条纹.研究结果显示,谐波间的干涉也可导致直流分量和二次谐波线宽仅为一次谐波线宽的38%,且存在磁场取向临界点,在不同的取向区间分别利用直流及两谐波共振信号辨析磁场变化,可获得最佳测磁灵敏度;同时还可通过共振时直流分量及两谐波对称成分振幅来确定磁场与激光极化方向的夹角,利用两谐波反对称成分相移的差值来确定待测磁场在垂直光极化方向投影与射频场方向的夹角,进而实现结构简单的张量磁矩进动型矢量磁力仪.这种磁力仪适合构成磁力仪阵列,可用于磁定位、水下磁异常源的检测和地磁导航等领域.  相似文献   

14.
We present an experiment in which an ultrashort pulse train propagates resonantly through anoptically dense vapor of atomic rubidium. The sequence obtained from a Fabry-Perot interferometer comprises nearly 10 regularly time-delayed and mode-locked pulses. We show that a sequence with phase shift phi = 0[2pi] between two successive pulses propagates with important temporal distortion, whereas a sequence with phi = pi[2pi] experiences few propagation effects, thus leading for the first time to our knowledge to the possibility of phase control of dispersion effects for an ultrashort pulse train.  相似文献   

15.
Recently, the design of a white-light cavity has been proposed using negative dispersion in an intracavity medium to make the cavity resonate over a large range of frequencies and still maintain a high cavity buildup. This Letter presents the first demonstration of this effect in a free-space cavity. The negative dispersion of the intracavity medium is caused by bifrequency Raman gain in an atomic vapor cell. A significantly broad cavity response over a bandwidth greater than 20 MHz has been observed. A key application of this device would be in enhancing the sensitivity-bandwidth product of the next generation gravitational wave detectors that make use of the so-called signal-recycling mirror.  相似文献   

16.
Integrated optical pulse shaper opens up possibilities for realizing the ultra high-speed and ultra wide-band linear signal processing with compact size and low power consumption. We propose a silicon monolithic integrated optical pulse shaper using optical gradient force, which is based on the eight-path finite impulse response. A cantilever structure is fabricated in one arm of the Mach–Zehnder interferometer(MZI) to act as an amplitude modulator. The phase shift feature of waveguide is analyzed with the optical pump power, and five typical waveforms are demonstrated with the manipulation of optical force. Unlike other pulse shaper schemes based on thermo–optic effect or electro–optic effect, our scheme is based on a new degree of freedom manipulation, i.e., optical force, so no microelectrodes are required on the silicon chip,which can reduce the complexity of fabrication. Besides, the chip structure is suitable for commercial silicon on an insulator(SOI) wafer, which has a top silicon layer of about 220 nm in thickness.  相似文献   

17.
董小伟  刘文楷 《中国物理 B》2013,22(2):24210-024210
In this paper,we present a novel ultrashort pulse shaper based on complex-modulated long-period-grating coupler(CM-LPGC).Temporal rectangular waveform with 2-ps full width at half maximum(FWHM) is obtained by transforming the input Gaussian pulse.Tolerances of the CM-LPGC-based shaper to various non-ideal excitation conditions and fabricating errors are investigated.Results confirm that CM-LPGC is stable and suitable for optical pulse shaping operation.  相似文献   

18.
We report on the first fabrication of nanostructures with exactly resonant light revealing the quantum character of the atom-light interaction. Classically the formation of nanostructures is not expected; thus, the observed formation of complex periodic line patterns can be explained only by treating atom-light interaction and propagation of the atoms quantum mechanically. Our numerical quantum calculations are in quantitative agreement with this experimental finding. Moreover, the theory predicts that for small detunings nanostructures with lambda/4 period can be produced, which beats the standard nanofabrication limit of lambda/2. Our experiments confirm this prediction.  相似文献   

19.
Spatiotemporal pulse shaping is characterized with two-dimensional Fourier transform spectral interferometry. A deformable-mirror-based bidimensional pulse shaper is used to create simple spatiotemporal structures on a femtosecond pulse, structures that are directly calculated from the measured spatiospectral phases and intensities.  相似文献   

20.
A procedure of correct calculation of the dispersion series for polarization of a resonant nonlinear medium is proposed. For the example of an inverted two-level system the maximal time of the group advance is analyzed for a pulse propagating with the velocity exceeding the speed of light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号