首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Gaussian type spin-polarized electronic wave packet is constructed to investigate the spin transport behaviour in an infinite two-dimensional electron gas system with Rashba spin--orbit (SO) interaction by solving the Schrödinger equation exactly. In the presence of Rashba SO interaction, the spin-dependent force induces a momentum dependent splitting of the two spin directions, the average spin current indicates the corresponding spin accumulation clearly. Furthermore, the coherence of the injected spin-polarized wave packet, as well as the transverse force, decays during the motion in the Rashba SO regime.  相似文献   

2.
Along the lines of Blonder, Tinkham and Klapwijk, we investigate the charge transport through ferromagnet/two-dimensional electronic gas/d-wave superconductor (F/2DEG/S) junctions in the presence of Rashba spin-orbit (SO) coupling and focus our attention on the interplay between spin polarization and spin precession. At zero spin polarization, the spin-mixing scattering resulted from Rashba SO coupling decreases the zero-bias conductance peak. Under spin polarization, spin precession introduces novel Andreev reflection, which competes with the effect of spin-mixing scattering. If the F layer is a half metal, the later effect is overwhelmed by that of novel Andreev reflection. As a result, the zero-bias conductance dip caused by spin polarization is enhanced, and at strong Rashba SO coupling, a split zero-bias peak is found in the gap. In an intermediate region where the two effects are comparable with each other, the zero-bias conductance shows a reentrant behavior as a function of Rashba SO coupling.  相似文献   

3.
Spin-dependent electron transport in a periodically stubbed quantum wire in the presence of Rashba spin-orbit interaction (SOI) is studied via the nonequilibrium Green’s function (GF) method combined with the Landauer-Büttiker formalism. By comparing with a straight Rashba quantum wire, the magnitude of spin conductance can be enhanced obviously. In addition, the charge and spin switching can also be found in the considered system. The mechanism of these transport properties is revealed by analyzing the total charge density and spin-polarized density distributions in the stubbed quantum wire. Furthermore, periodic spin-density islands with high polarization are also found inside the stubs, owing to the interaction between the charge density islands and the Rashba SOI-induced effective magnetic field. These interesting findings may be useful in further understanding of the transport properties of low-dimensional systems and in devising an all-electrical multifunctional spintronic device based on the proposed structure.  相似文献   

4.
Non-equilibrium spin accumulation in two-dimensional domain wall (DW) in the presence of external electric field and Rashba type spin-orbit coupling within the Boltzmann semi-classical model is investigated. Transport and relaxation of spin polarized current in the DW is governed by spin-flip rates which are determined by the Rashba interaction and magnetic impurities. Numerical results show that at low impurity densities and nonadiabatic transport regimes, the Rashba interaction significantly enhances spin polarization of conduction electrons inside the DW.  相似文献   

5.
In this article we study the role of Rashba spin–orbit coupling and electron–phonon interaction on the electronic structure of zigzag graphene nanoribbon with different width. The total Hamiltonian of nanoribbon is written in the tight binding form and the electron–electron interaction is modeled in the Hubbard term. We used a unitary transformation to reach an effective Hamiltonian for nano ribbon in the presence of electron–phonon interaction. Our results show that small Rashba spin orbit coupling annihilates the anti-ferromagnetic phase in the zigzag edges of ribbon and the electron–phonon interaction yields small polaron formation in graphene nano ribbon. Furthermore, Rashba type spin–orbit coupling increases (decreases) the polaron formation energy for up (down) spin state.  相似文献   

6.
We study graphene nanoribbons (GNRs) with armchair edges in the presence of Rashba spin- orbit interactions (RSOI). We impose the boundary conditions on the tight binding Hamiltonians for bulk graphene with RSOI by means of a sine transform and study the influence of RSOI on the spectra and the spin polarization in detail. We derive the low energy approximation of the RSOI Hamiltonian for the zeroth and first order in momentum and test their ranges of validity. The choice of a basis appropriate for armchair boundaries is important in the case of mode-coupling effects and leads to results that are easy to work with.  相似文献   

7.
We study the full counting statistics of transport electrons through a semiconductor two-level quantum dot with Rashba spin–orbit (SO) coupling, which acts as a nonabelian gauge field and thus induces the electron transition between two levels along with the spin flip. By means of the quantum master equation approach, shot noise and skewness are obtained at finite temperature with two-body Coulomb interaction. We particularly demonstrate the crucial effect of SO coupling on the super-Poissonian fluctuation of transport electrons, in terms of which the SO coupling can be probed by the zero-frequency cumulants. While the charge currents are not sensitive to the SO coupling.  相似文献   

8.
Using ensemble Monte Carlo simulation, we have studied hot carrier spin dynamics and spin noise in a multi-subband GaAs quantum wire in the presence of a randomly varying Rashba spin-orbit interaction. The random variation reduces the carrier ensemble's spin dephasing time due to the D'yakonov-Perel' mechanism, but otherwise makes no qualitative difference to the temporal spin relaxation characteristics. However, it makes a qualitative difference to the spatial spin relaxation characteristics which change from monotonic and smooth to non-monotonic and chaotic because of a complex interplay between carriers in different subbands. As far as spin fluctuation and spin noise are concerned, the random variation has no major effect except that the low-frequency noise power spectral density increases slightly when the magnitude of the Rashba spin-orbit interaction field is varied randomly while holding the direction constant.  相似文献   

9.
We propose a quasi one-dimensional quantum ring-shaped model associated with Rashba spin-orbit (SO) interaction and Aharomov-Bohm flux to study a spin-dependent quantum transport. It is a possible candidate for spintronic current modulators. By tuning SO coupling strength and Fermi energy, we find there is a broad energy range of small vanishing spin transmission in the resonance and antiresonance interferences. More interestingly, the large on/off spin-resolved polarized conductance ratios are robust even in the presence of strong random on-site Anderson-type disorder in devices, which suggests a potential application in the real system.  相似文献   

10.
In the present paper, we have theoretically investigated thermoelectric transport properties of armchair and zigzag graphene nanoribbons with Rashba spin–orbit interaction, as well as dephasing scattering processes by applying the nonequilibrium Green function method. Behaviors of electronic and thermal currents, as well as thermoelectric coefficients are studied. It is found that both electronic and thermal currents decrease, and thermoelectric properties been suppressed, with increasing strength of Rashba spin–orbit interaction. We have also studied spin split and spin density induced by Rashba spin–orbit interaction in the graphene nanoribbons.  相似文献   

11.
We predict the possibility to generate a finite stationary spin current by applying an unbiased ac driving to a quasi-one-dimensional asymmetric periodic structure with Rashba spin-orbit interaction and strong dissipation. We show that under a finite coupling strength between the orbital degrees of freedom the electron dynamics at low temperatures exhibits a pure spin ratchet behavior, i.e., a finite spin current and the absence of charge transport in spatially asymmetric structures. It is also found that the equilibrium spin currents are not destroyed by the presence of strong dissipation.  相似文献   

12.
The Bloch spinors, energy spectrum, and spin density in energy bands are studied for a two-dimensional electron gas (2DEG) with Rashba spin-orbit (SO) interaction subject to the one-dimensional (1D) periodic electrostatic potential of a lateral superlattice. The space symmetry of the Bloch spinors with spin parity is studied. It is shown that the Bloch spinors at fixed quasi-momentum describe the standing spin waves with the wavelength equal to the superlattice period. The spin projections in these states have components both parallel and transverse to the 2DEG plane. The anticrossing of the energy dispersion curves due to the interplay between the SO and periodic terms is observed, thus, leading to the spin flip. The relation between the spin parity and the interband optical selection rules is discussed, and the effect of magnetization of the SO superlattice in the presence of an external electric field is predicted. The text was submitted by the authors in English.  相似文献   

13.
We report a thorough theoretical investigation on the quantum transport of a disordered four terminal device in the presence of Rashba spin orbit coupling (RSOC) in two dimensions. Specifically we compute the behaviour of the longitudinal (charge) conductance, spin Hall conductance and spin Hall conductance fluctuation as a function of the strength of disorder and Rashba spin orbit interaction using the Landauer Büttiker formalism via Green’s function technique. Our numerical calculations reveal that both the conductances diminish with disorder. At smaller values of the RSOC parameter, the longitudinal and spin Hall conductances increase, while both vanish in the strong RSOC limit. The spin current is more drastically affected by both disorder and RSOC than its charge counterpart. The spin Hall conductance fluctuation does not show any universality in terms of its value and it depends on both disorder as well as on the RSOC strength. Thus the spin Hall conductance fluctuation has a distinct character compared to the fluctuation in the longitudinal conductance. Further one parameter scaling theory is studied to assess the transition to a metallic regime as claimed in literature and we find no confirmation about the emergence of a metallic state induced by RSOC.  相似文献   

14.
Karan Singh  K. Mukherjee 《哲学杂志》2020,100(13):1771-1787
ABSTRACT

In this work, we report the results of DC susceptibility, AC susceptibility and related technique, resistivity, transverse and longitudinal magnetoresistance and heat capacity on polycrystalline magnetic semimetal CeAlGe. This compound undergoes antiferromagnetic type ordering around 5.2 K (T1). Under the application of external magnetic fields, parallel alignment of magnetic moments is favoured above 0.5?T. At low field and temperature, frequency and AC field amplitude response of AC susceptibility indicate the presence of spin–lattice relaxation phenomena. The observation of spin–lattice interaction suggests the presence of the Rashba–Dresselhaus spin–orbit interaction which is associated with inversion and time-reversal symmetry breaking. Additionally, the presence of negative and asymmetric longitudinal magnetoresistance indicates anomalous velocity contribution to the magnetoresistance due to the Rashba–Dresselhaus spin–orbit interaction which is further studied by heat capacity.  相似文献   

15.
The spin‐dependent transport properties, including spin polarization and spin‐flip for phosphorene superlattice in the presence of an extrinsic Rashba spin‐orbit interaction (RSOI) based on the transfer matrix method, are studied. The results show that the number of barriers in the superlattice structure plays a dominant role in output spin polarization, which can be used in designing optimized spintronic devices. In addition, by controlling on the Rashba strength, an incident spin‐up electron can be transmitted as a spin‐down electron. Also, it enables to convert the unpolarized incident electronic beam (with zero spin polarization) into an arbitrary output spin polarization, which plays a significant role in qubit circuits.  相似文献   

16.
Pumping of charge current by spin dynamics in the presence of the Rashba spin-orbit interaction is theoretically studied. Considering a disordered electron, the exchange coupling and spin-orbit interactions are treated perturbatively. It is found that the dominant current induced by spin dynamics is interpreted as a consequence of the conversion from spin current via the inverse spin Hall effect. We also find that the current has an additional component from a fictitious conservative field. The results are applied to the case of a moving domain wall.  相似文献   

17.
The temperature dependence of the electron-spin relaxation time in MgB2 is anomalous as it does not follow the resistivity above 150 K; it has a maximum around 400 K and decreases for higher temperatures. This violates the well established Elliot-Yafet theory of spin relaxation in metals. The anomaly occurs when the quasiparticle scattering rate (in energy units) is comparable to the energy difference between the conduction and a neighboring bands. The anomalous behavior is related to the unique band structure of MgB2 and the large electron-phonon coupling. The saturating spin relaxation is the spin transport analogue of the Ioffe-Regel criterion of electron transport.  相似文献   

18.
The spin Hall effect in a two-dimensional electron system on honeycomb lattice with both intrinsic and Rashba spin-orbit couplings is studied numerically. Integer quantized spin Hall conductance is obtained at the zero Rashba coupling limit when electron Fermi energy lies in the energy gap created by the intrinsic spin-orbit coupling, in agreement with recent theoretical prediction. While nonzero Rashba coupling destroys electron spin conservation, the spin Hall conductance is found to remain near the quantized value, being insensitive to disorder scattering, until the energy gap collapses with increasing the Rashba coupling. We further show that the charge transport through counterpropagating spin-polarized edge channels is well quantized, which is associated with a topological invariant of the system.  相似文献   

19.
张林  汪军 《中国物理 B》2011,20(12):127203-127203
We theoretically study the persistent currents flowing in a Rashba quantum ring subjected to the Rashba spin-orbit interaction. By introducing uniform or nonuniform magnetization into the ring, we find that a nonzero persistent charge current circulates in the ring, which stems from the original equilibrium spin current due to the Rashba spin-orbit interaction. Because of broken time reversal symmetry, the two oppositely flowing spin-up and spin-down charge currents of the equilibrium spin current are no longer equal, and so a net persistent charge current can flow in the system. It is also found that the persistent current can be modulated by the Fermi energy, the Rashba spin-orbit interaction strength and the magnetization in the ring. Moreover, the magnetization perpendicular to the ring plane can optimize the current. The persistent current flowing in the ring is a manifestation of the nonzero equilibrium spin current existing in the ring.  相似文献   

20.
徐卫平  张玉颖  王强  聂一行 《中国物理 B》2016,25(11):117307-117307
We have studied spin-dependent thermoelectric transport through parallel triple quantum dots with Rashba spinorbital interaction(RSOI) embedded in an Aharonov-Bohm interferometer connected symmetrically to leads using nonequilibrium Green's function method in the linear response regime.Under the appropriate configuration of magnetic flux phase and RSOI phase,the spin figure of merit can be enhanced and is even larger than the charge figure of merit.In particular,the charge and spin thermopowers as functions of both the magnetic flux phase and the RSOI phase present quadruple-peak structures in the contour graphs.For some specific configuration of the two phases,the device can provide a mechanism that converts heat into a spin voltage when the charge thermopower vanishes while the spin thermopower is not zero,which is useful in realizing the thermal spin battery and inducing a pure spin current in the device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号