首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel method for the one pot synthesis of N-alkyl arylamines from nitro aromatic compounds and alcohols is proposed through the combination of the aqueous-phase reforming of alcohol for hydrogen production, the reduction of nitro aromatic compounds for the synthesis of aromatic amine and the N-alkylation of aromatic amine for the production of N-alkyl arylamine over an identical catalyst under the same conditions of temperature and pressure in a single reactor. In this process, hydrogen generated from the aqueous-phase reforming of alcohols was used in-situ for the hydrogenation of nitro aromatic compounds for aromatic amine synthesis, followed by N-alkylation of aromatic amine with alcohols to form the corresponding N-alkyl arylamines at a low partial pressure of hydrogen. For the system composed of nitrobenzene and ethanol, under the conditions of 413 K and PN2 = 1 MPa, the conversion degrees of nitrobenzene and aniline were 100%, the selectivity to N-ethylaniline and N, N-diethylaniline were 85.9% and 0%-4%, respectivity, after reaction for 8 h at the volumetric ratio of nitrobenzene:ethanol:water = 10:60:0. The selectivity for N, N-diethylaniline production is much lower than that through the traditional method. In this process, hydrogen and aromatic amines generated from the aqueous-phase reforming of alcohols and hydrogenation of nitro aromatic compounds, respectively, could be promptly removed from the surface of the catalyst due to the occurrence of in-situ hydrogenation and N-alkylation reactions. Thus, this may be a potential approach to increase the selectivity to N-alkyl arylamine.  相似文献   

2.
A tandem reduction‐reductive amination reaction has been applied to the synthesis of (±)‐4‐alkyl‐2,3,4,5‐tetrahydro‐1,5‐benzoxazepines and (±)‐4‐alkyl‐1‐benzoyl‐2,3,4,5‐tetrahydro‐1H‐1,5‐benzodiazepines. The nitro aldehydes and ketones required for 1,5‐benzoxazepine ring closures were prepared by nucleophilic aromatic substitution of the alkoxides from several 3‐buten‐1‐ol derivatives with 2‐fluoro‐1‐nitrobenzene followed by ozonolysis. Precursors for the 1,5‐benzodiazepines were prepared by similar addition of N‐(3‐butenyl)benzamide anions to 2‐fluoro‐1‐nitrobenzene followed by ozonolysis. Catalytic hydrogenation of the nitro carbonyl compounds using 5% palladium‐on‐carbon in methanol then gave the target heterocycles by a tandem reduction‐reductive amination sequence. The 1,5‐benzoxazepines were isolated in high yield following chromatographic purification; the 1,5‐benzodiazepines were isolated as solids directly from the hydrogenation mixture and possessed differentiated functionality on the two nitrogen atoms.  相似文献   

3.
N,N′‐Diethyl‐4‐nitrobenzene‐1,3‐diamine, C10H15N3O2, (I), crystallizes with two independent molecules in the asymmetric unit, both of which are nearly planar. The molecules differ in the conformation of the ethylamine group trans to the nitro group. Both molecules contain intramolecular N—H...O hydrogen bonds between the adjacent amine and nitro groups and are linked into one‐dimensional chains by intermolecular N—H...O hydrogen bonds. The chains are organized in layers parallel to (101) with separations of ca 3.4 Å between adjacent sheets. The packing is quite different from what was observed in isomeric 1,3‐bis(ethylamino)‐2‐nitrobenzene. 2,6‐Bis(ethylamino)‐3‐nitrobenzonitrile, C11H14N4O2, (II), differs from (I) only in the presence of the nitrile functionality between the two ethylamine groups. Compound (II) crystallizes with one unique molecule in the asymmetric unit. In contrast with (I), one of the ethylamine groups, which is disordered over two sites with occupancies of 0.75 and 0.25, is positioned so that the methyl group is directed out of the plane of the ring by approximately 85°. This ethylamine group forms an intramolecular N—H...O hydrogen bond with the adjacent nitro group. The packing in (II) is very different from that in (I). Molecules of (II) are linked by both intermolecular amine–nitro N—H...O and amine–nitrile N—H...N hydrogen bonds into a two‐dimensional network in the (10) plane. Alternating molecules are approximately orthogonal to one another, indicating that π–π interactions are not a significant factor in the packing. Bis(4‐ethylamino‐3‐nitrophenyl) sulfone, C16H18N4O6S, (III), contains the same ortho nitro/ethylamine pairing as in (I), with the position para to the nitro group occupied by the sulfone instead of a second ethylamine group. Each 4‐ethylamino‐3‐nitrobenzene moiety is nearly planar and contains the typical intramolecular N—H...O hydrogen bond. Due to the tetrahedral geometry about the S atom, the molecules of (III) adopt an overall V shape. There are no intermolecular amine–nitro hydrogen bonds. Rather, each amine H atom has a long (H...O ca 2.8 Å) interaction with one of the sulfone O atoms. Molecules of (III) are thus linked by amine–sulfone N—H...O hydrogen bonds into zigzag double chains running along [001]. Taken together, these structures demonstrate that small changes in the functionalization of ethylamine–nitroarenes cause significant differences in the intermolecular interactions and packing.  相似文献   

4.
In this article, the photocatalytic reaction of aniline and 4-amino N,N-dimethyl aniline with methanol, ethanol and isopropanol on anatase TiO2 nano-particles under UV (365-nm wavelength) irradiation was examined. The concentration of unreacted arylamines and products was measured by gas chromatography picks integration, and then the products were identified by mass spectroscopy analysis. By making a comparison within the rates of photocatalysis of each arylamine in different alcohols under various irradiation times, it was revealed that, in all cases, the sequence of photocatalysis rate was methanol > ethanol > isopropanol. In reactions where the concentrations of arylamine were lower than 10 mmol/l, imines were the main products and the alkylation of amines was not observed. In the higher concentration of arylamines, oxidation and dimerization was occurred.  相似文献   

5.
A procedure for the synthesis of N‐methyl‐arylamines directly from nitroarenes using methanol as green methylating agent was developed. The key to success is the use of a specific catalyst system consisting of palladium acetate and the ligand 1‐[2,6‐bis(isopropyl)phenyl]‐2‐[tert‐butyl(2‐pyridinyl)phosphino]‐1H‐Imidazole ( L1 ). The generality of this protocol is demonstrated in the synthesis of more than 20 N‐methyl‐arylamines under comparably mild conditions. Combining this novel methodology with subsequent coupling processes using the same catalyst allows for efficient diversification of aromatic nitro compounds to a broad variety of amines including drug molecules.  相似文献   

6.
The structures of 4‐nitrobenzene‐1,2‐diamine [C6H7N3O2, (I)], 2‐amino‐5‐nitroanilinium chloride [C6H8N3O2+·Cl, (II)] and 2‐amino‐5‐nitroanilinium bromide monohydrate [C6H8N3O2+·Br·H2O, (III)] are reported and their hydrogen‐bonded structures described. The amine group para to the nitro group in (I) adopts an approximately planar geometry, whereas the meta amine group is decidedly pyramidal. In the hydrogen halide salts (II) and (III), the amine group meta to the nitro group is protonated. Compound (I) displays a pleated‐sheet hydrogen‐bonded two‐dimensional structure with R22(14) and R44(20) rings. The sheets are joined by additional hydrogen bonds, resulting in a three‐dimensional extended structure. Hydrohalide salt (II) has two formula units in the asymmetric unit that are related by a pseudo‐inversion center. The dominant hydrogen‐bonding interactions involve the chloride ion and result in R42(8) rings linked to form a ladder‐chain structure. The chains are joined by N—H...Cl and N—H...O hydrogen bonds to form sheets parallel to (010). In hydrated hydrohalide salt (III), bromide ions are hydrogen bonded to amine and ammonium groups to form R42(8) rings. The water behaves as a double donor/single acceptor and, along with the bromide anions, forms hydrogen bonds involving the nitro, amine, and ammonium groups. The result is sheets parallel to (001) composed of alternating R55(15) and R64(24) rings. Ammonium N—H...Br interactions join the sheets to form a three‐dimensional extended structure. Energy‐minimized structures obtained using DFT and MP2 calculations are consistent with the solid‐state structures. Consistent with (II) and (III), calculations show that protonation of the amine group meta to the nitro group results in a structure that is about 1.5 kJ mol−1 more stable than that obtained by protonation of the para‐amine group. DFT calculations on single molecules and hydrogen‐bonded pairs of molecules based on structural results obtained for (I) and for 3‐nitrobenzene‐1,2‐diamine, (IV) [Betz & Gerber (2011). Acta Cryst. E 67 , o1359] were used to estimate the strength of the N—H...O(nitro) interactions for three observed motifs. The hydrogen‐bonding interaction between the pairs of molecules examined was found to correspond to 20–30 kJ mol−1.  相似文献   

7.
On the basis that endothermic aqueous-phase reforming of oxygenated hydrocarbons for H2 produc- tion and exothermic liquid phase hydrogenation of organic compounds are carried out under extremely close conditions of temperature and pressure over the same type of catalyst, a novel liquid system of catalytic hydrogenation has been proposed, in which hydrogen produced from aqueous-phase re- forming of oxygenated hydrocarbons is in situ used for liquid phase hydrogenation of organic com- pounds. The usage of active hydrogen generated from aqueous-phase reforming of oxygenated hy- drocarbons for liquid catalytic hydrogenation of organic compounds could lead to increasing the se- lectivity to H2 in the aqueous-phase reforming due to the prompt removal of hydrogen on the active centers of the catalyst. Meanwhile, this novel liquid system of catalytic hydrogenation might be a po- tential method to improve the selectivity to the desired product in liquid phase catalytic hydrogenation of organic compounds. On the other hand, for this novel liquid system of catalytic hydrogenation, some special facilities for H2 generation, storage and transportation in traditional liquid phase hydrogenation industry process are yet not needed. Thus, it would simplify the working process of liquid phase hy- drogenation and increase the energy usage and hydrogen productivity.  相似文献   

8.
Palladium-catalyzed transfer hydrogenation of some organic substrates in water containing a nonionic surfactant was examined using sodium hypophosphite as a hydrogen source. Hydrogenation of organohalides such as polychloroarenes, alkenes, alkynes, nitro compounds, aromatic aldehydes, and O-benzyl and N-benzyl derivatives efficiently proceeded to give the corresponding reduction products. The addition of a nonionic surfactant, such as Tween 20, proved to be effective in obtaining satisfactory results in most cases.  相似文献   

9.
Indole and 3-methylindole are completely converted by alcohols into N-alkyl or N-isoalkyl derivatives in the presence of aluminium alkoxides and Raney Nickel; 2-methylindole gives lower yields. Pyrroles suffer N- and C-alkylation but the initially formed N-alkylpyrroles are reduced into N-alkylpyrrolidines in the reaction mixtures. The occurrence of these N-alkylations is at variance with the C-alkylation of indoles and pyrroles which takes place by means of alcohols and sodium alkoxides. This suggests that the reaction occurs between the substrate and the reagent both coordinated by aluminium.  相似文献   

10.
1,3‐Bis(ethylamino)‐2‐nitrobenzene, C10H15N3O2, (I), and 1,3‐bis(n‐octylamino)‐2‐nitrobenzene, C22H39N3O2, (II), are the first structurally characterized 1,3‐bis(n‐alkylamino)‐2‐nitrobenzenes. Both molecules are bisected though the nitro N atom and the 2‐C and 5‐C atoms of the ring by twofold rotation axes. Both display intramolecular N—H...O hydrogen bonds between the amine and nitro groups, but no intermolecular hydrogen bonding. The nearly planar molecules pack into flat layers ca 3.4 Å apart that interact by hydrophobic interactions involving the n‐alkyl groups rather than by π–π interactions between the rings. The intra‐ and intermolecular interactions in these molecules are of interest in understanding the physical properties of polymers made from them. Upon heating in the presence of anhydrous potassium carbonate in dimethylacetamide, (I) and (II) cyclize with formal loss of hydrogen peroxide to form substituted benzimidazoles. Thus, 4‐ethylamino‐2‐methyl‐1H‐benzimidazole, C10H13N3, (III), was obtained from (I) under these reaction conditions. Compound (III) contains two independent molecules with no imposed internal symmetry. The molecules are linked into chains via N—H...N hydrogen bonds involving the imidazole rings, while the ethylamino groups do not participate in any hydrogen bonding. This is the first reported structure of a benzimidazole derivative with 4‐amino and 2‐alkyl substituents.  相似文献   

11.
A simple method for N-alkylation of 1,2-diaminoethane with different alcohols in a fixed-bed reactor using cheap CuO-NiO/γ-Al2O3 as the catalyst has been developed. The present catalytic system was applicable in the N-alkylation of 1,2-diaminoethane with both primary and secondary alcohols. Mono-N-alkylation of 1,2-diaminoethane with low-carbon alcohols resulted in high yields; the yields of tetra-N-alkylation of 1,2-diaminoethane with low-carbon alcohols declined markedly with the increase of the molecular volume of alcohols.  相似文献   

12.
Nitro‐aromatic compounds can be photocatalytically reduced into the corresponding amine‐aromatic compounds using TiO2 as a photocatalyst in the UV/TiO2/holes scavenger and Vis/TiO2/dye‐sensitized systems. In the UV/TiO2/holes scavenger system, reaction substrate alcohols such as methanol could be used as the holes scavengers, and in the Vis/TiO2/dye‐sensitized system, substrate alcohols could be oxidized to the corresponding aldehydes with high selectivity. When methanol was used as the holes scavengers and the illumination time was 6 h, 87.2% of p‐nitrotoluene could be photocatalytically reduced into p‐toluidine. In the Vis/TiO2/dye‐sensitized system, the effect of aromatic alcohols for the photocatalytic reduction of nitrobenzene was better than that of other alcohols. At the same time, aromatic alcohols can be easily oxidized, and the production efficiencies of the corresponding aldehydes were higher than those of other alcohols. The possible reaction mechanisms were also proposed.  相似文献   

13.
Electrophilic halogenation is used to produce a wide variety of halogenated compounds. Previously reported methods have been developed mainly using a reagent‐based approach. Unfortunately, a suitable “catalytic” process for halogen transfer reactions has yet to be achieved. In this study, arylamines have been found to generate an N‐halo arylamine intermediate, which acts as a highly reactive but selective catalytic electrophilic halogen source. A wide variety of heteroaromatic and aromatic compounds are halogenated using commercially available N‐halosuccinimides, for example, NCS, NBS, and NIS, with good to excellent yields and with very high selectivity. In the case of unactivated double bonds, allylic chlorides are obtained under chlorination conditions, whereas bromocyclization occurs for polyolefin. The reactivity of the catalyst can be tuned by varying the electronic properties of the arene moiety of catalyst.  相似文献   

14.
N‐Phenyl‐substituted pyrrolidines and piperidines have been synthesized by catalytic reduction of nitrobenzene in the presence of 4‐ and 5‐oxoaldehydes, respectively. The process involves reduction of the aromatic nitro group to give the N‐phenylhydroxylamine or aniline followed by reductive amination with the two carbonyl functional groups. Monocyclic systems are generally formed in high yield and are easily purified. The method has also been extended to the synthesis of fused N‐phenylazabicyclics from 2‐(3‐oxo‐propyl)cycloalkanones. A high degree of diastereoselectivity for the trans‐fused product is observed in substrates having an ester group α to the cycloalkanone carbonyl. Bicyclic precursors lacking this ester group give mixtures of cis and trans products. Finally, contrary to previous reports, we have demonstrated that aniline can be substituted for nitrobenzene in these reactions.  相似文献   

15.
《印度化学会志》2021,98(1):100014
We describe the selective transfer hydrogenation of aromatic nitro compounds to anilines using Pd/C as a heterogeneous catalyst with methanol as a green reductant. Nitroarenes bearing both electron-releasing and electron-deficient groups are amenable to this method and enable the synthesis of corresponding arylamines in moderate to good selectivities including the synthesis of butamben, a local anesthictic drug molecule. This new concise protocol is simple, ligand-free and does not require the supply of external molecular hydrogen.  相似文献   

16.
This article describes a novel method for the generation of alkyl radicals from alkylsilyl peroxides and their applications to the Cu-catalyzed mono-N-alkylation of amides or arylamines, and to the O-alkylation of carboxylic acids. The use of alkylsilyl peroxides as alkyl radical sources includes the following synthetic advantages: i) various alkylsilyl peroxides can be readily synthesized from the corresponding alcohols and be stored at bench, and ii) a variety of alkyl radicals can be generated efficiently under mild conditions.  相似文献   

17.
Herein we report a cobalt-catalyzed sustainable approach for C−N cross-coupling reaction between amines and alcohols. Using a well-defined Co-catalyst 1 a bearing 2-(phenyldiazenyl)-1,10-phenanthroline ligand, various N-alkylated amines were synthesized in good yields. 1 a efficiently alkylates diamines producing N, N′-dialkylated amines in good yields and showed excellent chemoselectivity when oleyl alcohol and β-citronellol, containing internal carbon-carbon double bond were used as alkylating agents. 1 a is equally compatible with synthesizing N-heterocycles via dehydrogenative coupling of amines and alcohols. 1H-Indole was synthesized via an intramolecular dehydrogenative N-alkylation reaction, and various substituted quinolines were synthesized by coupling of 2-aminobenzyl alcohol and secondary alcohols. A few control reactions and spectroscopic experiments were conducted to illuminate the plausible reaction mechanism, indicating that the 1 a -catalyzed N-alkylation proceeds through the borrowing hydrogen pathway. The coordinated arylazo ligand participates actively throughout the reaction; the hydrogen eliminated during dehydrogenation of alcohols was set aside in the ligand backbone and subsequently gets transferred in the reductive amination step to imine intermediates yielding N-alkylated amines. On the other hand, 1 a -catalyzed quinoline synthesis proceeds through dehydrogenation followed by successive C−C and C−N coupling steps forming H2O2 as a by-product under air.  相似文献   

18.
The structures of the two title isomeric compounds (systematic names: N‐meth­yl‐N,2‐dinitro­aniline and N‐meth­yl‐N,3‐di­nitro­aniline, both C7H7N3O4) are slightly different because they exhibit different steric hindrances and hydrogen‐bonding environments. The aromatic rings are planar. The –N(Me)NO2 and –NO2 groups are not coplanar with the rings. Comparison of the geometric parameters of the ortho, meta and para isomers together with those of N‐meth­yl‐N‐phenyl­nitramine suggests that the position of the nitro group has a strong influence on the aromatic ring distortion. The crystal packing is stabilized by weak C—H⋯O hydrogen bonds to the nitramine group.  相似文献   

19.
4,6‐Dinitro‐N,N′‐di‐n‐octylbenzene‐1,3‐diamine, C22H38N4O4, (I), 4,6‐dinitro‐N,N′‐di‐n‐undecylbenzene‐1,3‐diamine, C28H50N4O4, (II), and N,N′‐bis(2,4‐dinitrophenyl)octane‐1,8‐diamine, C20H24N6O8, (III), are the first synthetic meta‐dinitroarenes functionalized with long‐chain aliphatic amine groups to be structurally characterized. The intra‐ and intermolecular interactions in these model compounds provide information that can be used to help understand the physical properties of corresponding polymers with similar functionalities. Compounds (I) and (II) possess near‐mirror symmetry, with the octyl and undecyl chains adopting fully extended anti conformations in the same direction with respect to the ring. Compound (III) rests on a center of inversion that occupies the mid‐point of the central C—C bond of the octyl chain. The middle six C atoms of the chain form an anti arrangement, while the remaining two C atoms take hard turns almost perpendicular to the rest of the chain. All three molecules display intramolecular N—H...O hydrogen bonds between the amine and nitro groups, with the same NH group forming a bifurcated intermolecular hydrogen bond to the nitro O atom of an adjacent molecule. In each case, these interactions link the molecules into one‐dimensional molecular chains. In (I) and (II), these chains pack so that the pendant alkyl groups are interleaved parallel to one another, maximizing nonbonded C—H contacts. In (III), the alkyl groups are more isolated within the molecular chains and the primary nonbonded contacts between the chains appear to involve the nitro groups not involved in the hydrogen bonding.  相似文献   

20.
A ruthenacycle-catalyzed one-pot β-alkylation of secondary alcohols with primary alcohols is described. A survey of four C–N chelate ruthenacycles synthesized via the cyclometallation reaction of phenylmethanamine, N-methylphenylmethanamine, N,N-dimethylphenylmethanamine, and naphthalen-1-ylmethanamine with [(η6-C6H6)RuCl2]2 was undertaken. All four complexes were found to be active with the phenylmethanamine-based ruthenacycle showing the best combination of reactivity and product selectivity among the four. An expanded scope of substrates was also studied with the inclusion of unsaturated primary alcohols. The reactivity trend observed gave insights into the role of hydrogen bonding in the catalytic mechanism involving transfer hydrogenation between the substrates and the transition metal catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号