首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between formic acid (FA) and water was systemically investigated by atom-bond electronegativity equalization method fused into molecular mechanics (ABEEMσπ/MM) and ab initio methods. The geometries of 20 formic acid–water complexes (FA–water) were obtained using B3LYP/aug-cc-pVTZ level optimizations, and the energies were determined at the MP2/aug-cc-pVTZ level with basis set superposition error (BSSE) and zero-point vibrational energy (ZPVE) corrections. The ABEEMσπ potential model gives reasonable properties of these clusters when compared with the present ab initio data. For interaction energies, the root mean square deviation is 0.74 kcal/mol, and the linear coefficient reaches 0.993. Next, FA in aqueous solution was also studied. The hydrogen-bonding pattern due to the interactions with water has been analyzed in detail. Furthermore, the ABEEMσπ charges changed when H2O interacted with the FA molecule, especially at the sites where the hydrogen bonds form. These results show that the ABEEMσπ fluctuating charge model is fine giving the overall characteristic hydration properties of FA–water systems in good agreement with the high-level ab initio calculations.  相似文献   

2.
Uracil–(H2O)n (n = 1–7) clusters were systemically investigated by ab initio methods and the newly constructed ABEEMσπ/MM fluctuating charge model. Water molecules have been gradually placed in an average plane containing uracil. The geometries of 38 uracil–water complexes were obtained using B3LYP/6-311++G** level optimizations, and the energies were determined at the MP2/6-311++G** level with BSSE corrections. The ABEEMσπ/MM potential model gives reasonable properties of these clusters when comparing with the present ab initio data. For interaction energies, the root mean square deviation is 0.96 kcal/mol, and the linear coefficient reaches 0.997. Furthermore, the ABEEMσπ charges changed when H2O interacted with the uracil molecule, especially at the sites where the hydrogen bond form. These results show that the ABEEMσπ/MM model is fine giving the overall characteristic hydration properties of uracil–water systems in good agreement with the high-level ab initio calculations.  相似文献   

3.
Dimethyl phosphate (DMP) anion has been used extensively as a model compound to simulate the properties of phosphate group. A 35-point DMP anion potential model is constructed based on the atom-bond electronegativity equalization fluctuating charge molecular force field (ABEEM/MM), and it is employed to study the properties of gas-phase DMP anion and DMP-(H2O) n (n = 1–3) clusters. The ABEEM/MM model reproduces well the properties obtained by available experiments and QM calculations, including charge distributions, geometries, and conformational energies of gas-phase DMP-water complexes. Furthermore, molecular dynamics simulation on the DMP anion in aqueous solution based on the ABEEM/MM shows that a remarkable first hydration shell around the nonesterified oxygen atom of DMP anion is formed with a coordination number of 5.2. It is also found that two hydrogen atoms of one water molecule form two hydrogen bonds with two nonesterified oxygen atoms of DMP anion simultaneously. This work could be used as a starting point for us to establish the ABEEM/MM nucleic acid force field.  相似文献   

4.
ABEEM/MM model has been applied to compute the various properties characterizing water clusters (H2O) n (n = 7−10), such as optimized geometries, the hydrogen bonds number, cluster interaction energies, stabilities, ABEEM charge distributions, dipole moments, structural parameters, and so on, and to describe the transition reflected by the hexamer region from two-dimensional (from dimer to pentamer) to three-dimensional structures (for clusters larger than the hexamer). Supported by the National Natural Science Foundation of China (Grant No. 20373021)  相似文献   

5.
管清梅  杨忠志 《中国化学》2007,25(6):727-735
A detailed theoretical investigation on Co^3+ hydration in aqueous solution has been carded out by means of molecular dynamics (MD) simulations based on the atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM). The effective Co^3+ ion-water potential has been constructed by fitting to ab initio structures and binding energies for ionic clusters. And then the ion-water interaction potential was applied in combination with the ABEEM-7P water model to molecular dynamics simulations of single Co^3+(aq.) solution, managing to reproduce many experimental structural and dynamical properties of the solution. Here, not only the common properties (radial distribution function, angular distribution function and solvation energy) obtained for Co^3+ in ABEEM-7P water solution were in good agreement with those from the experimental methods and other molecular dynamics simulations but also very interesting properties of charge distributions, geometries of water molecules, hydrogen bond, diffusion coefficients, vibrational spectra are investigated by ABEEM/MM model.  相似文献   

6.
The calculated result obtained with MM2(87) for the rotation of the isopropyl group in 3-methyl-1-butene is not in agreement with experimental data. In order to reparametrize the Csp2-Csp3-Csp-Csp3 torsional angle, 3-methyl-1-butene and 1-butene have been studied by molecular mechanics (MM2(87)) and ab initio (MP2/6-31G* and MP3/6-31G*) calculations. The reparametrization of the torsional angle gives calculated results from MM2(87) in agreement with experimental data and ab initio calculations for both 3-methyl-1-butene and 1-butene. The calculated barriers for the rotation of alkyl groups in alkylbenzenes are improved with these new parameters.  相似文献   

7.
To promote accuracy of the atom‐bond electronegativity equalization method (ABEEMσπ) fluctuating charge polarizable force fields, and extend it to include all transition metal atoms, a new parameter, the reference charge is set up in the expression of the total energy potential function. We select over 700 model molecules most of which model metalloprotein molecules that come from Protein Data Bank. We set reference charges for different apparent valence states of transition metals and calibrate the parameters of reference charges, valence state electronegativities, and valence state hardnesses for ABEEMσπ through linear regression and least square method. These parameters can be used to calculate charge distributions of metalloproteins containing transition metal atoms (Sc‐Zn, Y‐Cd, and Lu‐Hg). Compared the results of ABEEMσπ charge distributions with those obtained by ab initio method, the quite good linear correlations of the two kinds of charge distributions are shown. The reason why the STO‐3G basis set in Mulliken population analysis for the parameter calibration is specially explained in detail. Furthermore, ABEEMσπ method can also quickly and quite accurately calculate dipole moments of molecules. Molecular dynamics optimizations of five metalloproteins as the examples show that their structures obtained by ABEEMσπ fluctuating charge polarizable force field are very close to the structures optimized by the ab initio MP2/6–311G method. This means that the ABEEMσπ/MM can now be applied to molecular dynamics simulations of systems that contain metalloproteins with good accuracy. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Various properties of water clusters in the n = 2–34 size regime with the change of cluster size have been systemically explored based on the newly developed flexible-body and charge-fluctuating ABEEM/MM water potential model. The ABEEM/MM water model is to take ABEEM charges of all atoms, bonds, and lone-pairs of water molecules into the intermolecular electrostatic interaction term in molecular mechanics. The computed correlating properties characterizing water clusters (H2O) n (n = 2–34) include optimal structures, structural parameters, ABEEM charge distributions, binding energies, hydrogen bonds, dipole moments, and so on. The study of optimal structures shows that the ABEEM/MM model can correctly predict the following important structural features, such as the transition from two-dimensional (from dimer to pentamer) to three-dimensional (for clusters larger than the hexamer) structures at hexamer region, the transition from cubes to cages at dodecamer (H2O)12, the transition from all-surface (all water molecules on the surface of the cluster) to one water-centered (one water molecule at the center of the cluster, fully solvated) structures at (H2O)17, the transition from one to two internal molecules in the cage at (H2O)33, and so on. The first three structural transitions are in good agreement with those obtained from previous work, while the fourth transition is different from that identified by Hartke. Subsequently, a systematic investigation of structural parameters, ABEEM charges, energetic properties, and dipole moments of water clusters with increasing cluster size can provide important reference for describing the objective trait of hydrogen bonds in water cluster system, and also provide a strong impetus toward understanding how the water clusters approach the bulk limit.  相似文献   

9.
ABEEM/MM model has been applied to compute the various properties characterizing water clusters (H2O) n (n = 7?10), such as optimized geometries, the hydrogen bonds number, cluster interaction energies, stabilities, ABEEM charge distributions, dipole moments, structural parameters, and so on, and to describe the transition reflected by the hexamer region from two-dimensional (from dimer to pentamer) to three-dimensional structures (for clusters larger than the hexamer).  相似文献   

10.
Extensive calculations on hydrogen bonded systems were carried out using the improved MM3 directional hydrogen bond potential. The resulting total function was reoptimized. Comparisons of the hydrogen bonding potential function from ab initio calculations (MP2/6-31G**); the original MM3(89); and the reoptimized MM3 force field MM3(96), for a variety of C, N, O, and Cl systems including the formamide dimer and formamide–water complex, are described herein. Hydrogen bonding is shown to be a far more complicated and ubiquitous phenomenon than is generally recognized. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1001–1016, 1998  相似文献   

11.
Various properties (such as optimal structures, structural parameters, hydrogen bonds, natural bond orbital charge distributions, binding energies, electron densities at hydrogen bond critical points, cooperative effects, and so on) of gas phase ethanol–(water)n (n = 1–5) clusters with the change in the number of water molecules have been systematically explored at the MP2/aug‐cc‐pVTZ//MP2/6‐311++G(d,p) computational level. The study of optimal structures shows that the most stable ethanol‐water heterodimer is the one where exists one primary hydrogen bond (O? H…O) and one secondary hydrogen bond (C? H …O) simultaneously. The cyclic geometric pattern formed by the primary hydrogen bonds, where all the molecules are proton acceptor and proton donor simultaneously, is the most stable configuration for ethanol–(water)n (n = 2–4) clusters, and a transition from two‐dimensional cyclic to three‐dimensional structures occurs at n = 5. At the same time, the cluster stability seems to correlate with the number of primary hydrogen bonds, because the secondary hydrogen bond was extremely weaker than the primary hydrogen bond. Furthermore, the comparison of cooperative effects between ethanol–water clusters and gas phase pure water clusters has been analyzed from two aspects. First of all, for the cyclic structure, the cooperative effect in the former is slightly stronger than that of the latter with the increasing of water molecules. Second, for the ethanol–(water)5 and (water)6 structure, the cooperative effect in the former is also correspondingly stronger than that of the latter except for the ethanol–(water)5 book structure. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
LiOH is one of the strong bases among neutral molecules. What about hydroxides of small Lin (n = 2 ? 5) clusters? The addition of a single atom to a cluster sometimes has dramatic effects on its reactivity. This fact motivated us to perform an ab initio MP2/6‐311++G(d, p) investigation on LinOH species (n = 1 ? 5). These LinOH species are stabilized by both ionic as well as covalent interactions, and are found to be stable against elimination of LiOH and OH. We have determined their gas and aqueous phase basicity by considering hypothetical protonation reactions. The calculated proton affinities of LinOH (n ≥ 2) suggest their reduced basicity as compared to LiOH by 50–100 kJ/mol. The NBO charges and the highest occupied molecular orbitals also reveal the electride and alkalide characteristics of Li2OH and Li3OH, respectively. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
Hydration of aqueous fluoride ions has been studied by theoretical ab initiocalculations in an attempt to understand the experimental Raman spectrum.Calculations for hydrated fluoride, F (H2O)n where n = 1–10, have been performedat the RHF/6-31 + G* level. A relatively stable geometry exists for n = 6; abovethis number, additional waters hydrogen bond to water of the hydrated fluoride.On the long time scale of the ab initio calculation or experimental diffractionstudies, the average coordination of fluoride is 6. However, it has been possibleto interpret the low-frequency Raman spectrum on the basis of a singlehydrogen-bonded water molecule, F ... HOH. To rationalize these results, it is proposedthat the average coordination of fluoride is 6, but on the time scale of the Ramanexperiment the fluoride is symmetrically bonded to only one hydrogen of onewater molecule.Chairman and Organizer of the Symposium dedicated to Donald Irish. Unfortunately Murray died during the preparation of this special issue  相似文献   

14.
Density functional theory and ab initio calculations were performed to elucidate the hydrogen interactions in (H2O4)n (n = 1–4) clusters. The optimized geometries, binding energies, and harmonic vibrational frequencies were predicted at various levels of theory. The trans conformer of the H2O4 monomer was predicted to be the most stable structure at the CCSD(T)/aug‐cc‐pVTZ level of theory. The binding energies per H2O4 monomer increased in absolute value by 9.0, 10.1, and 11.8 kcal/mol from n = 2 to n = 4 at the MP2/cc‐pVTZ level of theory (after the zero‐point vibrational energy and basis set superposition error corrections). This result implies that the intermolecular hydrogen bonds were stronger in the long‐chain clusters, that is, the formation of the longer chain in the (H2O4)n clusters was more energetically favorable.  相似文献   

15.
应用从头算方法和ABEEM/MM浮动电荷分子力场, 研究了水合碱土离子团簇Sr2+/Ba2+(H2O)n (n=1-6), 构建了离子-水相互作用的ABEEM/MM势能函数, 获得了水合离子团簇的稳定结构, 计算了结合能. 计算结果表明, ABEEM/MM方法的结果和从头算方法的结果有很好的一致性. 进一步应用ABEEM/MM对Sr2+和Ba2+水溶液进行了分子动力学模拟. 对Sr2+水溶液, 得到的Sr2+-水中氧原子的径向分布函数的第一和第二最高峰分别位于0.257和0.464 nm处, 第一和第二水合层的配位水分子数分别为9.2和11.4; 对Ba2+水溶液, 得到的Ba2+与水中氧原子的径向分布函数的第一和第二最高峰分别位于0.269和0.467 nm处, 第一和第二水合层的配位水分子数分别为9.9和12.4. 这与实验值或其它理论模拟结果有较好的一致性. 对比外层的水分子, 金属离子的极化作用使得溶液中第一水合层中水分子的O―H键长增长, HOH键角减小.  相似文献   

16.
17.
The microscopic mechanisms of ion hydration and ion selectivity in biomolecular systems are long-standing research topics,in which the difficulty is how to reasonably and accurately describe the ion-water and ion-biomolecule interactions.This paper summarizes the development and applications of the atom-bond electronegativity equalization fluctuating charge force field model,ABEEM/MM,in the investigations of ion hydration,metalloproteins and ion-DNA bases systems.Based on high-level quantum chemistry calculations,the parameters were optimized and the molecular potential functions were constructed and applied to studies of structures,activities,energetics,and thermodynamic and kinetic properties of these ion-containing systems.The results show that the performance of ABEEM/MM is generally better than that of the common force fields,and its accuracy can reach or approach that of the high-level ab initio MP2 method.These studies provide a solid basis for further investigations of ion selectivity in biomolecular systems,the structures and properties of metalloproteins and other related ion-containing systems.  相似文献   

18.
The performance of correlated ab initio methods and DFT methods was compared for the propagation and chain transfer steps of ethylene polymerization by a model aluminum–amidinate system, [{HC(NH)2}AlCH2CH3]+. All methods agree that the main chain transfer mechanism is β‐hydrogen transfer to the monomer (BHT), and that this is substantially easier than propagation; implications for the real Jordan system are discussed briefly. Counterpoise corrections are necessary to obtain reasonable olefin complexation energies. Activation energies are consistently lower at DFT (BP86, B3LYP) than at ab initio levels [MP2, MP3, MP4, CI, CCSD(T)]; the differences are particularly large (16 kcal/mol) for the BHT reaction. This is suggested to be related to the known problem of DFT in describing hydrogen bridged systems. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 398–410, 2000  相似文献   

19.
In this article, four series of Diels–Alder (DA) reactions (totally, 68 reactions) have been investigated, including their transition states, by means of ab initio method at MP2/6‐311+G(d,p) level and atom‐bond electronegativity equalization method (ABEEMσπ) method. The rationalization of stereoselectivities of these DA reactions has been done in the light of the local hard and soft acids and bases (HSAB) criterion. The results show that the finite difference approximation with ab initio method can not always be used to predict the stereoselectivities of these reactions, while ABEEMσπ method can properly be applied to predict the stereoselectivities of these DA reactions. Moreover, we have proposed the generalized Fukui function and local softness which involve the number of the atoms of a molecule. For the first time, we here demonstrate that local HSAB criterion with the generalized local softness can be utilized not only to predict the main products of these DA reactions but also to rationalize the relative magnitudes of the reaction rate constants of these DA reactions. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Semi-empirical molecular orbital methods proposed up to now seriously fail to describe hydrogen bonded systems associated with (H2O) n . A new scheme of parametrization using a semi-empirical method is proposed. We tested hydrogen bonding associated with the water clusters (H2O) n . The results are found to be close to ab initio Hartree-Fock quality, indicating a good promise for studying hydrogen-bonding systems other than O-H...O moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号