首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[reaction: see text] The complex [Ru(tpy)(pydic)] (1a) is an active catalyst for epoxidation of alkenes by aqueous 30% hydrogen peroxide in tertiary alcohols. The protocol is simple to operate and gives the corresponding epoxides in good to excellent yields. Chiral enantiopure [Ru(tpy)(pydic)] complexes have been synthesized and successfully applied in this procedure.  相似文献   

2.
Asymmetric epoxidation of olefins with 30 % H2O2 in the presence of [Ru(pybox)(pydic)] 1 and [Ru(pyboxazine)(pydic)] 2 has been studied in detail (pybox = pyridine-2,6-bisoxazoline, pyboxazine = pyridine-2,6-bisoxazine, pydic = 2,6-pyridinedicarboxylate). 35 Ruthenium complexes with sterically and electronically different substituents have been tested in environmentally benign epoxidation reactions. Mono-, 1,1-di-, cis- and trans-1,2-di-, tri-, and tetra-substituted aromatic olefins with versatile functional groups can be epoxidized with this type of catalyst in good to excellent yields (up to 100 %) with moderate to good enantioselectivies (up to 84 % ee). Additive and solvent effects as well as the relative rate of reaction with different catalysts have been established. It is shown that the presence of weak organic acids or an electron-withdrawing group on the catalyst increases the reactivity. New insights on the reaction intermediates and reaction pathway of the ruthenium-catalyzed epoxidation are proposed on the basis of density functional theory calculation and experiments.  相似文献   

3.
A dichlororuthenium(IV) complex of 5,10,15,20-tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,2:5,8-dimethanoanthrance-9-yl]porphyrin, [Ru(IV)(D(4)-Por)Cl(2)] (1), was prepared by heating [Ru(II)(D(4)-Por)(CO)(MeOH)] (2) in refluxing CCl(4). Complex 1 is characterized by (1)H NMR (paramagnetically shifted pyrrolic protons at delta(H) = -52.3 ppm), FAB-mass spectroscopies, and magnetic susceptibility measurement (mu(eff) = 3.1 mu(B)). The ruthenium complex exhibits remarkable catalytic activity toward enantioselective alkene epoxidation using 2,6-dichloropyridine N-oxide (Cl(2)pyNO) as terminal oxidant. The Ru(IV)-catalyzed styrene epoxidation is achieved within 2 h (versus 48 h for the 2-catalyzed reaction), and optically active styrene oxide was obtained in 69% ee and 84% yield (875 turnovers). Likewise, substituted styrenes and some conjugated cis-disubstituted alkenes (e.g., cis-beta-methylstyrene, cis-1-phenyl-3-penten-1-yne, 1,2-dihydronaphthalene, and 2,2-dimethylchromenes) are converted effectively to their organic epoxides in 50-80% ee under the Ru(IV)-catalyzed conditions, and more than 850 turnovers of epoxides have been attained. When subjecting 1 to four repetitive uses by recharging the reaction mixture with Cl(2)pyNO and styrene, styrene oxide was obtained in a total of 2190 turnovers and 69% ee. UV-vis and ESI-mass spectral analysis of the final reaction mixture revealed that a ruthenium-carbonyl species could have been formed during the catalytic reaction, leading to the apparent catalyst deactivation. We prepared a heterogeneous chiral ruthenium porphyrin catalyst by immobilizing 1 into sol-gel matrix. The heterogeneous catalyst is highly active toward asymmetric styrene epoxidation producing styrene oxide in 69% ee with up to 10,800 turnovers being achieved. The loss of activity of the Ru/sol-gel catalyst is ascribed to catalyst leaching and/or deactivation. On the basis of Hammett correlation (rho(+) = -1.62, R = 0.99) and product analysis, a dioxoruthenium(VI) porphyrin intermediate is not favored.  相似文献   

4.
Dubois G  Murphy A  Stack TD 《Organic letters》2003,5(14):2469-2472
[reaction: see text] A mu-oxo-iron(III) dimer, [((phen)(2)(H(2)O)Fe(III))(2)(mu-O)](ClO(4))(4), is an efficient epoxidation catalyst for a wide range of alkenes, including terminal alkenes, using peracetic acid as the oxidant. Low catalyst loadings, in situ catalyst preparation from common reagents, fast reaction times (<5 min at 0 degrees C), and enhanced reaction performance at high substrate concentrations combine to create a temporally and synthetically efficient procedure for alkene epoxidation.  相似文献   

5.
A beta-cyclodextrin-modified ketoester 2 was prepared by covalent attachment of a reactive ketone moiety to beta-cyclodextrin. Treatment of 2 with Oxone as terminal oxidant would produce CD-substituted dioxirane, which can effect stereoselective alkene epoxidation. The 2-mediated (S)-alpha-terpineol epoxidations proceeded to give terpineol oxides in high yields, and the stereoselectivities (i.e., cis-/trans-epoxide ratio) decreased from 2.5:1 to 1:1.2 with increasing steric bulkiness of the terpenes. This steric-dependent stereoselectivity can be understood based on different binding geometries of the 2/terpene inclusion complexes according to the (1)H NMR titration and 2D ROESY experiments. Enantioselective epoxidation of styrenes has also been achieved with 2 as catalyst (20-50 mol %) in aqueous acetonitrile solution, and up to 40% ee was obtained in 4-chlorostyrene epoxidation at 0 degrees C. Similar enantioselectivities were also obtained for the 2-mediated epoxidation of 1,2-dihydronaphthalene (37% ee), 4-chlorostyrene (36% ee), and trans-stilbene (31% ee).  相似文献   

6.
The syntheses and reactivities of sterically encumbered trans-dioxoosmium(VI) complexes containing Schiff-base ligands bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamine (H2tBu-salch) and bis(3,5-dibromosalicylidene)-1,2-cyclohexane-diamine (H2Br-salch) are described. Reactions of [Os(VI)tBu-salch)O2] (1a) and [Os(VI)(Br-salch)O2] (1b) with PPh(3), p-X-arylamines (X = NO2, CN), N2H4 x H2O, Ph2NNH2, SOCl2, CF3CO2H, Br2, and I2 under reducing conditions gave [Os(II)(Br-salch)(OPPh3)2] (2), [Os(IV)(Br-salch)(p-X-C6H4NH)2] (3), [mu-O-{Os(IV)(tBu-salch)(p-NO2C6H4NH)}2] (4), [Os(II)(Br-salch)(N2)(H2O)] (5), [Os(IV)(tBu-salch)(OH)(Cl)] (6), [Os(IV)(tBu-salch)(OH)2] (7), [Os(IV)(tBu-salch)Cl2] (8), [Os(IV)(tBu-salch)(CF3CO2)2] (9), [Os(IV)(tBu-salch)Br2] (10), and [Os(IV)(tBu-salch)I2] (11), respectively. X-ray crystal structure determinations of [Os(IV)(Br-salch)(p-NO2C6H4NH)2] (3a), [Os(IV)(Br-salch)(p-CNC6H4NH)2] (3b), 6, 8, 9, and 11 reveal the Os-N(amido) distances to be 1.965(4)-1.995(1) A for the bis(amido) complexes, Os-Cl distances of 2.333(8)-2.3495(1) A for 6 and 8, Os-O(CF3CO2) distances of 2.025(6)-2.041(6) A for 9, and Os-I distances of 2.6884(6)-2.6970(6) A for 11. Upon UV irradiation, (1S,2S)-(1a) reacted with aryl-substituted alkenes to give the corresponding epoxides in moderate yields, albeit with no enantioselectivity. The (1R,2R)-6 catalyzed cyclopropanation of a series of substituted styrenes exhibited moderate to good enantioselectivity (up to 79% ee) and moderate trans selectivity.  相似文献   

7.
Chiral metalloporphyrins [Mn(Por*)(OH)(MeOH)] (1) and [Ru(Por*)(CO)(EtOH)] (2) catalyze asymmetric aziridination of aromatic alkenes and asymmetric amidation of benzylic hydrocarbons to give moderate enantiomeric excesses. The mass balance in these nitrogen-atom-transfer processes has been examined. With PhI=NTs as the nitrogen source, the aziridination of styrenes, trans-stilbene, 2-vinylnaphthalene, indene, and 2,2-dimethylchromene catalyzed by complex 1 or 2 resulted in up to 99 % substrate conversions and up to 94 % aziridine selectivities, whereas the amidation of ethylbenzenes, indan, tetralin, 1-, and 2-ethylnaphthalene catalyzed by complex 2 led to substrate conversions of up to 32 % and amide selectivities of up to 91 %. Complex 1 or 2 can also catalyze the asymmetric amidation of 4-methoxyethylbenzene, tetralin, and 2-ethylnaphthalene with "PhI(OAc)(2) + NH(2)SO(2)Me", affording the N-substituted methanesulfonamides in up to 56 % ee with substrate conversions of up to 34 % and amide selectivities of up to 92 %. Extension of the "complex 1 + PhI=NTs" or "complex 1 + PhI(OAc)(2) + NH(2)R (R=Ts, Ns)" amidation protocol to a steroid resulted in diastereoselective amidation of cholesteryl acetate at the allylic C-H bonds at C-7 with substrate conversions of up to 49 % and amide selectivities of up to 90 % (alpha:beta ratio: up to 4.2:1). An aziridination- and amidation-active chiral bis(tosylimido)ruthenium(VI) porphyrin, [Ru(Por*)(NTs)(2)] (3), and a ruthenium porphyrin aziridine adduct, [Ru(Por*)(CO)(TsAz)] (4, TsAz=N-tosyl-2- (4-chlorophenyl)aziridine), have been isolated from the reaction of 2 with PhI=NTs and N-tosyl-2-(4-chlorophenyl)aziridine, respectively. The imidoruthenium porphyrin 3 could be an active species in the aziridination or amidation catalyzed by complex 2 described above. The second-order rate constants for the reactions of 3 with styrenes, 2-vinylnaphthalene, indene, ethylbenzenes, and 2-ethylnaphthalene range from 3.7-42.5x10(-3) dm(3) mol(-1) s(-1). An X-ray structure determination of complex 4 reveals an O- rather than N-coordination of the aziridine axial ligand. The fact that the N-tosylaziridine in 4 does not adopt an N-coordination mode disfavors a concerted pathway in the aziridination by a tosylimido ruthenium porphyrin active species.  相似文献   

8.
Yin CX  Finke RG 《Inorganic chemistry》2005,44(12):4175-4188
A 1997 Nature paper reported that a novel Ru(2)-incorporated sandwich-type polyoxometalate, {[WZnRu(III)(2)(OH)(H(2)O)](ZnW(9)O(34))(2)}(11)(-), is an all-inorganic dioxygenase catalyst for the hydroxylation of adamantane and the epoxidation of alkenes using molecular oxygen. Specifically, it was reported that the above Ru(2)-containing polyoxometalate catalyzes the following reaction by a non-radical-chain, dioxygenase mechanism: 2RH + O(2) --> 2ROH (R = adamantane). A re-investigation of the above claim has been performed, resulting in the following findings: (1) iodometric analysis detects trace peroxides (0.5% relative to adamantane), the products of free-radical-chain autoxidation, at the end of the adamantane hydroxylation reaction; (2) a non-dioxygenase product, H(2)(18)O, is observed at the end of an adamantane hydroxylation reaction performed using (18)O(2); (3) kinetic studies reveal a fractional rate law consistent with a classic radical-chain reaction; (4) a non-dioxygenase approximately 1:1 adamantane products/O(2) stoichiometry is observed in our hands (instead of the claimed 2:1 adamantane/O(2) dioxygenase stoichiometry); (5) adamantane hydroxylation is initiated by the free radical initiator, AIBN (2,2'-azobisisobutyronitrile), or the organic hydroperoxide, t-BuOOH; (6) four radical scavengers completely inhibit the reaction; and (7) {[WZnRu(III)(2)(OH)(H(2)O)](ZnW(9)O(34))(2)}(11)(-) is found to be an effective catalyst for cyclohexene free-radical-chain autoxidation. The above results are consistent with and strongly supportive of a free-radical-chain mechanism, not the previously claimed dioxygenase pathway.  相似文献   

9.
Organic disulfides with both alkyl and aryl substituents are oxidized by hydrogen peroxide when CH(3)ReO(3) (MTO) is used as a catalyst. The first step of the reaction is complete usually in about an hour, at which point the thiosulfinate, RS(O)SR, can be detected in nearly quantitative yield. The thiosulfinate is then converted, also by MTO-catalyzed oxidation under these conditions, to the thiosulfonate and, over long periods, to sulfonic acids, RSO(3)H. In the absence of excess peroxide, RS(O)SR (R = p-tolyl), underwent disproportionation to RS(O)(2)SR and RSSR. Kinetics studies of the first oxidation reaction established that two peroxorhenium compounds are the active forms of the catalyst, CH(3)ReO(2)(eta(2)-O(2)) (A) and CH(3)ReO(eta(2)-O(2))(2).(OH(2)) (B). Their reactivities are similar; typical rate constants (L mol(-)(1) s(-)(1), 25 degrees C, aqueous acetonitrile) are k(A) = 22, k(B) = 150 (Bu(2)S(2)) and k(A) = 1.4, k(B) = 11 (Tol(2)S(2)). An analysis of the data for (p-XC(6)H(4))(2)S(2) by a plot of log k(B) against the Hammett sigma constant gave rho = -1.89, supporting a mechanism in which the electron-rich sulfur attacks a peroxo oxygen of intermediates A and B.  相似文献   

10.
The substitution reactions of the tetrahedral Fe sites in [FeCl(4)](-), [Fe(2)S(2)Cl(4)](2-), [Fe(4)S(4)Cl(4)](2-) and [{MoFe(3)S(4)Cl(3)}(2)(micro-SEt)(3)](3-) with 4-RC(6)H(4)S(-) (R = MeO, Me, H, Cl or NO(2)) all involve rapid binding of the thiolate to a Fe site and formation of a kinetically and spectroscopically detectable intermediate. Kinetic studies allow calculation of the rate of Fe-Cl dissociation from the 5-coordinate site of the intermediate (k(2)(R)). The rate of Fe-Cl dissociation from the intermediate exhibits a marked dependence on the nature of the bound thiolate with log(10)(k(2)(R)) increasing in a linear manner with the calculated NBO charge on the sulfur atom of the coordinated thiolate. This behaviour indicates that Fe-Cl bond dissociation at the 5-coordinate intermediate involves a process in which Fe-thiolate bond shortening occurs prior to movement of the Fe-Cl bond.  相似文献   

11.
The synthesis of a family of new Ru complexes containing meridional or facial tridentate ligands with the general formula [Ru(II)(T)(D)(X)](n+) [T = 2,2':6',2' '-terpyridine or tripyrazolylmethane; D = 4,4'-dibenzyl-4,4',5,5'-tetrahydro-2,2'-bioxazole (S,S-box-C) or 2-[((1'S)-1'-(hydroxymethyl)-2'-phenyl)ethylcarboxamide]-(4S)-4-benzyl-4,5-dihydrooxazole (S,S-box-O); X = Cl, H(2)O, MeCN or pyridine] has been described. All complexes have been spectroscopically characterized in solution through (1)H NMR and UV-vis techniques. Furthermore, all of the chloro complexes presented here have also been characterized in the solid state through monocrystal X-ray diffraction analysis. The oxazolinic S,S-box-C ligands undergo a Ru-assisted hydrolysis reaction generating the corresponding amidate anionic oxazolinic ligands S,S-box-O, which are also strongly attached to the metal center and produce a strong sigma-donation effect over the Ru metal center. The redox properties of all complexes have also been studied by means of cyclic voltammetry, strongly reflecting the nature of the ligands; both effects, geometrical (facial vs meridional) and electronic (neutral vs anionic), can be unveiled and rationalized. Finally, the reactivity of the Ru-OH(2) complexes has been tested with regard to the epoxidation of trans-stilbene, and it has been shown that, in this particular case, the reactivity is practically not dependent on the redox potentials of the catalyst but, in sharp contrast, it is strongly dependent on the geometry of the tridentate ligands.  相似文献   

12.
Extensive investigations of asymmetric intermolecular cyclopropanation of terminal alkenes with diazoacetates catalyzed by ruthenium porphyrin [Ru(P*)(CO)(EtOH)] (1, H2P = 5,10,15,20-tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracene-9-yl]porphyrin) and the application of catalyst 1 to asymmetric intramolecular cyclopropanation of allylic or homoallylic diazoacetates are described. The intermolecular cyclopropanation of styrene and its derivatives with ethyl diazoacetate afforded the corresponding cyclopropyl esters in up to 98% ee with high trans/cis ratios of up to 36 and extremely high catalyst turnovers of up to 1.1 x 10(4). Examination of the effects of temperature, diazoacetate, solvent, and substituent in the intermolecular cyclopropanation reveals that (i) both enantioselectivity and trans selectivity increase with decreasing temperature, (ii) sterically encumbered diazoacetates N2CHCO2R, such as R = Bu(t), and donor solvents, such as diethyl ether and tetrahydrofuran, are beneficial to the trans selectivity, and (iii) electron-donating para substituents on styrene accelerate the cyclopropanations, with the log(k(X)/k(H)) vs sigma(+) plot for para-substituted styrenes p-X-C6H4CH=CH2 (X = MeO, Me, Cl, CF3) exhibiting good linearity with a small negative rho(+) value of -0.44 +/- 0.09. In the case of intramolecular cyclopropanation, complex 1 promoted the decomposition of a series of allylic diazoacetates to form the cyclopropyl lactones in up to 85% ee, contributing the first efficient metalloporphyrin catalyst for an asymmetric intramolecular cyclopropanation. Both the inter- and intramolecular cyclopropanations were proposed to proceed via a reactive chiral ruthenium carbene intermediate. The enantioselectivities in these processes were rationalized on the basis of the X-ray crystal structures of closely related stable chiral carbene complexes [Ru(P*)(CPh2)] (2) and [Ru(P*)(C(Ph)CO2CH2CH=CH2)] (3) obtained from reactions of complex 1 with N2CPh2 and N2C(Ph)CO2CH2CH=CH2, respectively.  相似文献   

13.
cis-Dioxoruthenium(VI) complex [(Me(3)tacn)(CF(3)CO(2))Ru(VI)O(2)]ClO(4) (1, Me(3)tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) reacted with alkenes in aqueous tert-butyl alcohol to afford cis-1,2-diols in excellent yields under ambient conditions. When the reactions of 1 with alkenes were conducted in acetonitrile, oxidative C=C cleavage reaction prevailed giving carbonyl products in >90% yields without any cis-diol formation. The alkene cis-dihydroxylation and C=C cleavage reactions proceed via the formation of a [3 + 2] cycloadduct between 1 and alkenes, analogous to the related reactions with alkynes [Che et al. J. Am. Chem. Soc. 2000, 122, 11380]. With cyclooctene and trans-beta-methylstyrene as substrates, the Ru(III) cycloadducts (4a) and (4b) [formula; see text] were isolated and structurally characterized by X-ray crystal analyses. The kinetics of the reactions of 1 with a series of p-substituted styrenes has been studied in acetonitrile by stopped-flow spectrophotometry. The second-order rate constants varied by 14-fold despite an overall span of 1.3 V for the one-electron oxidation potentials of alkenes. Secondary kinetic isotope effect (KIE) was observed for the oxidation of beta-d(2)-styrene (k(H)/k(D) = 0.83 +/- 0.04) and alpha-deuteriostyrene (k(H)/k(D) = 0.96 +/- 0.03), which, together with the stereoselectivity of cis-alkene oxidation by 1, is in favor of a concerted mechanism.  相似文献   

14.
This paper describes the development of green, efficient H(2)O(2)-based epoxidation systems with three kinds of polyoxometalates: (i) a dinuclear peroxotungstate [W(2)O(3)(O(2))(4)(H(2)O)(2)](2-) (I), (ii) a divacant lacunary polyoxotungstate [gamma-SiW(10)O(34)(H(2)O)(2)]4 (II), (iii) and a divanadium-substituted polyoxotungstate [gamma-1,2-H(2)SiV(2)W(10)O(40)](4-) (III). The highly chemo-, regio-, and diastereoselective epoxidation of various allylic alcohols with only 1 equiv H(2)O(2) in water can be efficiently catalyzed by potassium salt of I (K-I). The catalyst K-I can be recycled with the retention of the catalytic performance. Protonation of a divacant lacunary polyoxotungstate [gamma-SiW(10)O(36)](8-) gives [gamma-SiW(10)O(34)(H(2)O)(2)](4-) (II) with two aquo ligands. The tetra-n-butylammonium salt of II (TBA-II) catalyzes epoxidation of common olefins including propylene with >or=99% selectivity to epoxide and >or=99% efficiency of H(2)O(2) utilization. The bis(mu-hydroxo)bridged dioxovanadium site in [gamma-1,2-H(2)SiV(2)W(10)O(40)](4-) (III) can also efficiently catalyze epoxidation of a variety of olefins with 1 equiv H(2)O(2). Notably, the system with III shows unique stereospecificity, diastereoselectivity, and regioselectivity for the epoxidation of cis/trans olefins, 3-substituted cyclohexenes, and nonconjugated dienes, respectively, which are quite different from those reported for epoxidation systems up to now. Furthermore, the heterogenization of the mentioned polyoxometalates can be achieved by using ionic liquid-modified SiO(2) as a support without loss of catalytic performance.  相似文献   

15.
研究了一种可循环并且环境友好的催化体系:[π-C5H5N(CH2)15CH3]3[PMoW3O24]/过氧化氢/乙酸乙酯/烯烃.此体系不仅可以催化烯烃的环氧化反应,而且避免了对含氯溶剂的使用.反应在过氧化氢/乙酸乙酯的两相体系中进行,可以将多种烯烃转化为相应的环氧化物,且产率较高.此催化剂具有反应控制相转移的特征,反应结束后可以回收再利用.采用Raman,IR,^31P MAS NMR和^31P NMR等手段对新鲜及重复使用过的催化剂进行表征.结果表明:新鲜催化剂[π-C5H5N(CH2)15CH3]3[PMoW3O24]是一种混合物,含有多种过氧磷钼钨酸盐,如{PO4[MoO(O2)2]4}^3-,[(PO4){Mo3WO20}]^3-,[(PO4){Mo2W2O20}]^3-,[(PO4){MoW3O20}]^3-和{PO4[WO(O2)2]4}^3-.当过氧化氢被完全消耗后,这些小的活性物种就会聚合成具有混合多原子的Keggin型杂多阴离子,形成M-Ob—M(M=W或Mo)和M-Oc-M键.  相似文献   

16.
A library of inorganic complexes with reversible redox chemistry and/or the ability to catalyze homogeneous oxidations by peroxides, including but not limited to combinations of polyoxometalate anions and redox-active cations, was constructed. Evaluation of library members for the ability to catalyze aerobic sulfoxidation (O(2) oxidation of the thioether, 2-chloroethyl ethyl sulfide, CEES) led to the discovery that a combination of HAuCl(4) and AgNO(3) forms a catalyst that is orders of magnitude faster than the previously most reactive such catalysts (Ru(II) and Ce(IV) complexes) and one effective at ambient temperature and 1 atm air or O(2). If no O(2) but high concentrations of thioether are present, the catalyst is inactivated by an irreversible formation of colloidal Au(0). However, this inactivation is minimal in the presence of O(2). The stoichiometry is R(2)S + (1)/(2)O(2) --> R(2)S(O), a 100% atom efficient oxygenation, and not oxidative dehydrogenation. However, isotope labeling studies with H(2)(18)O indicate that H(2)O and not O(2) or H(2)O(2) is the source of oxygen in the sulfoxide product; H(2)O is consumed and subsequently regenerated in the mechanism. The rate law evaluated for every species present in solution, including the products, and other kinetics data, indicate that the dominant active catalyst is Au(III)Cl(2)NO(3)(thioether) (1); the rate-limiting step involves oxidation of the substrate thioether (CEES) by Au(III); reoxidation of the resulting Au(I) to Au(III) by O(2) is a fast subsequent step. The rate of sulfoxidation as Cl is replaced by Br, the solvent kinetic isotope effect (k(H)(2)(O)/k(D)(2)(O) = 1.0), and multiparameter fitting of the kinetic data establish that the mechanism of the rate-limiting step involves a bimolecular attack of CEES on a Au(III)-bound halide and it does not involve H(2)O. The reaction is mildly inhibited by H(2)O and the CEESO product because these molecules compete with those needed for turnover (Cl(-), NO(3)(-)) as ligands for the active Au(III). Kinetic studies using DMSO as a model for CEESO enabled inhibition by CEESO to be assessed.  相似文献   

17.
The tetra-n-butylammonium (TBA) salt of the divacant Keggin-type polyoxometalate [TBA](4)[gamma-SiW(10)O(34)(H(2)O)(2)] (I) catalyzes the oxygen-transfer reactions of olefins, allylic alcohols, and sulfides with 30 % aqueous hydrogen peroxide. The negative Hammett rho(+) (-0.99) for the competitive oxidation of p-substituted styrenes and the low value of (nucleophilic oxidation)/(total oxidation), X(SO)=0.04, for I-catalyzed oxidation of thianthrene 5-oxide (SSO) reveals that a strongly electrophilic oxidant species is formed on I. The preferential formation of trans-epoxide during epoxidation of 3-methyl-1-cyclohexene demonstrates the steric constraints of the active site of I. The I-catalyzed epoxidation proceeds with an induction period that disappears upon treatment of I with hydrogen peroxide. (29)Si and (183)W NMR spectroscopy and CSI mass spectrometry show that reaction of I with excess hydrogen peroxide leads to fast formation of a diperoxo species, [TBA](4)[gamma-SiW(10)O(32)(O(2))(2)] (II), with retention of a gamma-Keggin type structure. Whereas the isolated compound II is inactive for stoichiometric epoxidation of cyclooctene, epoxidation with II does proceed in the presence of hydrogen peroxide. The reaction of II with hydrogen peroxide would form a reactive species (III), and this step corresponds to the induction period observed in the catalytic epoxidation. The steric and electronic characters of III are the same as those for the catalytic epoxidation by I. Kinetic, spectroscopic, and mechanistic investigations show that the present epoxidation proceeds via III.  相似文献   

18.
A novel heterogeneous catalyst, [Zn(2.15)Al(0.86)(OH)(6.02)][Mn](0.19)[C(6)H(5)COO](0.48.2H(2)O, where [[Mn]= chiral sulfonato(-)salen-manganese(iii) complex, Na(2)MnC(20)H(22)N(2)S(2)O(12)Cl, intercalated into Zn(II)-Al(III) layered double hydroxide host], has been synthesized and found to be an effective heterogeneous catalyst for the stereoselective epoxidation of R-(+)-limonene using molecular oxygen. The catalyst could be recycled without loss of performance.  相似文献   

19.
[Mo(O)(O(2))(2)(L)(2)] compounds (L = pz, pyrazole; dmpz, 3,5-dimethylpyrazole) were reacted stoichiometrically, in the absence of an oxidant, with cis-cyclooctene in an ionic liquid medium where selective formation of the corresponding epoxide was observed. However, this oxo-transfer reaction was not observed for some other olefins, suggesting that alternative reaction pathways exist for these epoxidation processes. Subsequently, DFT studies investigating the oxodiperoxomolybdenum catalysed epoxidation model reaction for ethylene with hydrogen peroxide oxidant were performed. The well known Sharpless mechanism was first analysed for the [Mo(O)(O(2))(2)(dmpz)(2)] model catalyst and a low energy reaction pathway was found, which fits well with the observed experimental results for cis-cyclooctene. The structural parameters of the computed dioxoperoxo intermediate [Mo(O)(2)(O(2))(dmpz)(2)] in the Sharpless mechanism compare well with those found for the same moiety within the [Mo(4)O(16)(dmpz)(6)] complex, for which the full X-ray report is presented here. A second mechanism for the model epoxidation reaction was theoretically investigated in order to clarify why some olefins, which do not react stoichiometrically in the absence of an oxidant, showed low level conversions in catalytic conditions. A Thiel-type mechanism, in which the oxidant activation occurs prior to the oxo-transfer step, was considered. The olefin attack of the hydroperoxide ligand formed upon activation of hydrogen peroxide with the [Mo(O)(O(2))(2)(dmpz)(2)] model catalyst was not possible to model. The presence of two dmpz ligands coordinated to the molybdenum centre prevented the olefin attack for steric reasons. However, a low energy reaction pathway was identified for the [Mo(O)(O(2))(2)(dmpz)] catalyst, which can be formed from [Mo(O)(2)(O(2))(dmpz)(2)] by ligand dissociation. Both mechanisms, Sharpless- and Thiel-type, were found to display comparable energy barriers and both are accessible alternative pathways in the oxodiperoxomolybdenum catalysed olefin epoxidation. Additionally, the molecular structures of [Mo(O)(O(2))(2)(H(2)O)(pz)] and [Hdmpz](4)[Mo(8)O(22)(O(2))(4)(dmpz)(2)]·2H(2)O and the full X-ray report of [Mo(O)(O(2))(2)(pz)(2)] are also presented.  相似文献   

20.
Complexes [(BPMEN)Fe(II)(CH(3)CN)(2)](ClO(4))(2) (1, BPMEN = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane) and [(TPA)Fe(II)(CH(3)CN)(2)](ClO(4))(2) (2, TPA = tris(2-pyridylmethyl)amine) are among the best nonheme iron-based catalysts for bioinspired oxidation of hydrocarbons. Using EPR and (1)H and (2)H NMR spectroscopy, the iron-oxygen intermediates formed in the catalyst systems 1,2/H(2)O(2); 1,2/H(2)O(2)/CH(3)COOH; 1,2/CH(3)CO(3)H; 1,2/m-CPBA; 1,2/PhIO; 1,2/(t)BuOOH; and 1,2/(t)BuOOH/CH(3)COOH have been studied (m-CPBA is m-chloroperbenzoic acid). The following intermediates have been observed: [(L)Fe(III)(OOR)(S)](2+), [(L)Fe(IV)═O(S)](2+) (L = BPMEN or TPA, R = H or (t)Bu, S = CH(3)CN or H(2)O), and the iron-oxygen species 1c (L = BPMEN) and 2c (L = TPA). It has been shown that 1c and 2c directly react with cyclohexene to yield cyclohexene oxide, whereas [(L)Fe(IV)═O(S)](2+) react with cyclohexene to yield mainly products of allylic oxidation. [(L)Fe(III)(OOR)(S)](2+) are inert in this reaction. The analysis of EPR and reactivity data shows that only those catalyst systems which display EPR spectra of 1c and 2c are able to selectively epoxidize cyclohexene, thus bearing strong evidence in favor of the key role of 1c and 2c in selective epoxidation. 1c and 2c were tentatively assigned to the oxoiron(V) intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号