首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous gel deswelling rates for copolymer hydrogels comprising N‐isopropylacrylamide (IPAAm) and 2‐carboxyisopropylacrylamide (CIPAAm) in response to increasing temperatures were investigated. Compared with pure IPAAm‐based gels, IPAAm–CIPAAm gels shrink very rapidly in response to small temperature increases across their lower critical solution temperature (their volume is reduced by five‐sixths within 60 s). Shrinking rates for these hydrogels increase with increasing CIPAAm content. In contrast, structurally analogous IPAAm–acrylic acid (AAc) copolymer gels lose their temperature sensitivity with the introduction of only a few mole percent of AAc. Additionally, deswelling rates of IPAAm–AAc gels decrease with increasing AAc content. These results indicate that IPAAm–CIPAAm copolymer gels behave distinctly from IPAAm–AAc systems even if both comonomers, CIPAAm and AAc, possess carboxylic acid groups. Thus, we propose that the sensitive deswelling behavior for IPAAm–CIPAAm gels results from strong hydrophobic chain aggregation maintained between network polymer chains due to the similar chemical structures of CIPAAm and IPAAm. This structural homology facilitates aggregation of chain isopropylamide groups for both IPAAm and CIPAAm sequences with increasing temperature. The incorporation of AAc, however, shows no structural homology to IPAAm, inhibiting chain aggregation and limiting collapse. A functionalized temperature‐sensitive poly(N‐isopropylacrylamide) hydrogel containing carboxylic acid groups is possible with CIPAAm, producing rapid and large volume changes in response to smaller temperature changes. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 335–342, 2001  相似文献   

2.
Two monomers containing functional ? OH groups with different hydrophilic long side chains (viz., triethyleneglycol methacrylate (TREGMA) and polyethyleneglycol methacrylate (PEGMA)) were selected to modify the swelling/deswelling behavior of poly(N‐isopropylacrylamide) (pNIPAM) microgels. Dynamic scattering technique, turbidimetric method, and differential scanning calorimetry (DSC) were employed to investigate the deswelling behavior of the microgels. Experimental results show that the two series of microgels are identical in that incorporation of hydrophilic chains containing ? OH groups causes the volume‐phase transition temperature (VPTT) of pNIPAM microgels to shift to higher temperature; the more hydrophilic the side chains, the more the VPTTs shift. Although PEGMA are more effective in elevating the VPTTs of pNIPAM microgels than TREGMA, p(NIPAM‐co‐TREGMA) microgels show better deswelling properties than p(NIPAM‐co‐PEGMA) microgels, i.e., they have much larger deswelling ratios (α) and display less continuous volume‐phase transition. The VPTTs of the modified microgels can be modulated to well close to the normal body temperature of human beings. These characteristics along with the functional ? OH groups they contain make the microgels competitive candidates for biomaterials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3575–3583, 2005  相似文献   

3.
Temperature‐triggered switchable nanofibrous membranes are successfully fabricated from a mixture of cellulose acetate (CA) and poly(N‐isopropylacrylamide) (PNIPAM) by employing a single‐step direct electrospinning process. These hybrid CA‐PNIPAM membranes demonstrate the ability to switch between two wetting states viz. superhydrophilic to highly hydrophobic states upon increasing the temperature. At room temperature (23 °C) CA‐PNIPAM nanofibrous membranes exhibit superhydrophilicity, while at elevated temperature (40 °C) the membranes demonstrate hydrophobicity with a static water contact angle greater than 130°. Furthermore, the results here demonstrate that the degree of hydrophobicity of the membranes can be controlled by adjusting the ratio of PNIPAM in the CA‐PNIPAM mixture.

  相似文献   


4.
To shed new light on the mechanisms of saccharide stereochemistry effect on macromolecules in aqueous solutions, we studied the effect of three monosaccharide stereoisomers, glucose, galactose, and mannose, on the swelling of Poly(N‐isopropylacrylamide) (PNIPA) hydrogels. We equilibrated PNIPA hydrogels in sugar solutions of different concentrations at 25 °C, and determined gel volume and mass swelling ratios, and sugar concentration imbalance. The volume‐phase‐transition occurred at molal concentrations of 0.587 ± 0.004 (galactose), 0.724 ± 0.003 (glucose), and 0.846 ± 0.004 (mannose). The same order of sugars emerged for the gel‐swelling and the magnitude of the sugar concentration‐imbalance, which correlated with sugar isentropic molar compressibility and hydration number. The more hydrated the sugar, the worse a cosolvent it is for the polymer, hence the larger the deswelling and the more negative the sugar concentration imbalance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

5.
Chitosan (CS), CS‐poly(N‐isopropylacrylamide)(PNIPAM) and their dyed (pyrene) hydrogels were prepared using glutaraldehyde (Glu) as a crosslinker. The gelation rate, swelling behaviors in ethanol/water mixtures, electricity‐induced contraction and thermoresponse of the gels were investigated using fluorescence probe technique. Results showed that CS/Glu, and PNIPAM‐containing CS/Glu gels exhibited similar properties in all aspects examined, except that the transparence of the CS‐PNIPAM/Glu gel is very dependent upon the temperature. The CS‐PNIPAM/Glu gel is transparent below 30°C, whereas opaque above 32°C. It is expected that this observation may be useful for the design and preparation of new kinds of hydrogel devices. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 474–481, 2000  相似文献   

6.
The synthesis and characterization of thermoresponsive hydrogels on the basis of N‐isopropylacrylamide (IPAAm) copolymers crosslinked with biodegradable poly(amino acids) are described. This hydrogel was prepared with two kinds of reactive IPAAm‐based copolymers containing poly(amino acids) as the side‐chain groups and activated ester groups. We introduced the graft chains by decarboxylation polymerization of amino acid N‐carboxyanhydrides initiated from lateral amino groups in the PIPAAm copolymer. The hydrogels easily crosslinked with degradable poly(amino acid) chains by only mixing the copolymer aqueous solutions. The gelling method in this study would provide some of the following innovative features: (1) no necessary removal of unreacted monomers and so forth, (2) simpler loading of drugs into the hydrogels (only mixing when gelling), and (3) easier insertion into the body. On the basis of the swelling ratio measurement of the hydrogel, large volume changes dependent on temperature changes were observed. Moreover, the enzymatic temperature‐dependent degradation was confirmed. The results suggested that these hydrogels could be used for an injectable or implantable matrix of temperature‐modulated drug release. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 779–787, 2003  相似文献   

7.
Poly(N,N‐dimethylacrylamide‐co‐allyl methacrylate) (DMA‐co‐AMA) copolymers were prepared by the copolymerization of N,N‐dimethylacrylamide with allyl methacrylate (AMA). The methacryloyl group of AMA reacted preferentially, and this resulted in pendant allyl groups along the copolymer chains. Aqueous solutions of these DMA‐co‐AMA copolymers were thermoresponsive and showed liquid–liquid phase transitions at temperatures that depended on the AMA content. Hydrogel microspheres were prepared from these thermally phase‐separated liquid microdroplets by the free‐radical crosslinking of the pendant allyl groups. The morphologies of the resulting thermoresponsive microspheres as a function of the reaction temperature and the amount of the initiator were examined. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1641–1648, 2005  相似文献   

8.
A series of novel temperature‐ and pH‐responsive graft copolymers, poly(L ‐glutamic acid)‐g‐poly(N‐isopropylacrylamide), were synthesized by coupling amino‐semitelechelic poly(N‐isopropylacrylamide) with N‐hydroxysuccinimide‐activated poly(L ‐glutamic acid). The graft copolymers and their precursors were characterized, by ESI‐FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase‐transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0–7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core‐shell aggregates at pH 4.5–7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140–4150, 2008  相似文献   

9.
Phase transition and mobility of poly(N‐isopropylacrylamide) (PNIPA) chains with three different types of end groups (hydroxyl, carbon–carbon double bond, and camphoric sulfonic groups) have been studied by measurements of the normal 1H NMR spectrum, spin–spin relaxation time, and 2D NOESY spectrum. It is found that at room temperature not only the end group parts but also the part of the PNIPA chain with hydroxyl end group have higher mobility than corresponding parts of PNIPA with double bond and camphoric sulfonic end groups. The lower critical solution temperatures (LCST) of PNIPAs modified with hydrophilic hydroxyl and hydrophobic double bond end groups are inversely dependent and directly dependent on the molecular weight of polymer respectively, whereas the LCST of PNIPA with the camphoric sulfonic end group bearing both hydrophobic and hydrophilic structures is independent of the molecular weight. The double bond end groups collapse simultaneously with inner segments of the PNIPA chain, whereas the hydroxyl and camphoric sulfonic end groups still exhibit higher mobility and do not shrink tightly after heating‐induced collapsing of inner segments. It is suggested that the hydroxyl and camphoric sulfonic end groups locate on the surface of globules, but the double bond end groups are probably buried inside the globules. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

10.
N–Isopropylacrylamide (NIPAM) was polymerized using 1‐pyrenyl 2‐chloropropionate (PyCP) as the initiator and CuCl/tris[2‐(dimethylamino)ethyl]amine (Me6TREN) as the catalyst system. The polymerizations were performed using the feed ratio of [NIPAM]0/[PyCP]0/[CuCl]0/[Me6TREN]0 = 50/1/1/1 in DMF/water of 13/2 at 20 °C to afford an end‐functionalized poly(N‐isopropylacrylamide) with the pyrenyl group (Py–PNIPAM). The characterization of the Py–PNIPAM using matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry provided the number–average molecular weight (Mn,MS). The lower critical solution temperature (LCST) for the liquid–solid phase transition was 21.7, 24.8, 26.5, and 29.3 °C for the Py–PNIPAMs with the Mn,MS's of 3000, 3400, 4200, and 5000, respectively; hence, the LCST was dramatically lowered with the decreasing Mn,MS. The aqueous Py–PNIPAM solution below the LCST was characterized using a static laser light scattering (SLS) measurement to determine its molar mass, Mw,SLS. The aqueous solutions of the Py–PNIPAMs with the Mn,MS's of 3000, 3400, 4200, and 5000 showed the Mw,SLS of 586,000, 386,000, 223,000, and 170,000, respectively. Thus, lowering the LCST for Py–PNIPAM should be attributable to the formation of the PNIPAM aggregates. The LCST of 21.7 °C for Py–PNIPAM with the Mn,MS of 3000 was effectively raised by adding β‐cyclodextrin (β‐CD) and reached the constant value of ~26 °C above the molar ratio of [β‐CD]/[Py–PNIPAM] = 2/1, suggesting that β‐CD formed an inclusion complex with pyrene in the chain‐end to disturb the formation of PNIPAM aggregates, thus raising the LCST. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1117–1124, 2006  相似文献   

11.
The use of polymeric materials with temperature‐dependent degrees of swelling (especially polymers that exhibit lower critical solution temperature (LCST) behaviour in aqueous solutions) in microsystems requires the preparation and patterning of layers in the µm range. Copolymers based on N‐isopropylacrylamide were modi‐fied with a stilbazolium salt chromophore to yield photocrosslinkable temperature‐sensitive polymers. The chromophore and the polymers were characterized by UV, IR, 1H‐NMR (nuclear magnetic resonance) and 13C‐NMR spectra. The resulting polymers showed LCST behaviour, which was measured by differential scanning calorimetry. The photocrosslinking properties were studied by UV irradiation of the thin films and measurement of the changes in the UV absorption spectra. By irradiation of thin films through a mask it was possible to obtain patterned networks in the µm range (20 µm space width and ≥50 µm line width). The resulting patterned networks showed temperature‐dependent swelling properties in aqueous media. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Poly(N‐isopropylacrylamide‐co‐3‐(trimethoxysilyl)propyl methacrylate), P(NIPAAm‐co‐TMSPMA), copolymers with relatively high TMSPMA contents without insoluble fraction are successfully synthesized. Subsequent sol–gel reactions in both the absence and presence of tetraethyl orthosilicate lead to gels with high gel fractions. The resulting gels undergo gel collapse at 28.6–28.7 °C, i.e., below that of poly(N‐isopropylacrylamide) homopolymer of 34.3 °C. Unexpectedly, the theophylline‐loaded hybrid gels release the drug not only below but also above the gel collapse temperature (GCT) with considerable rates and released amounts of drug. Surprisingly, evaluation of the sustained release profiles by the Korsmeyer–Peppas equation indicates that the release occurs by Fickian diffusion above GCT, which can be attributed to the lack of significant drug–polymer interaction at such temperatures. These results can be widely applied for the design and utilization of TMSPMA‐based sol–gel polymer hybrids with desired release profiles of solutes below and above GCT for a variety of applications.

  相似文献   


13.
In this study, the effect of the level of crosslinking on the properties of poly(N‐isopropylacrylamide) (PNIPAAm) hydrogels was investigated in terms of their lower critical solution temperature (LCST), interior morphology, equilibrium swelling, and deswelling and swelling kinetics. The thermal analysis showed that PNIPAAm hydrogels, having a wide range of crosslinking levels, exhibited almost the same LCSTs, and this was different from what the conventional theory would have predicted. Scanning electron micrographs revealed that the interior network structure of the PNIPAAm matrix became more porous with an increase in the level of crosslinking. This more porous matrix provided numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to the external temperature changes during the deswelling process and the swelling process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 582–593, 2003  相似文献   

14.
A polypseudorotaxane (PPR) comprising γ‐cyclodextrin (γ‐CD) as host molecules and poly(N‐isopropylacrylamide) (PNIPAM) as a guest polymer is prepared via self‐assembly in aqueous solution. Due to the bulky pendant isopropylamide group, PNIPAM exhibits size‐selectivity toward self‐assembly with α‐, β‐, and γ‐CDs. It can fit into the cavity of γ‐CD to give rise to a PPR, but cannot pass through α‐CD and β‐CD under the same conditions. The ratio of the number of γ‐CD molecules to entrapped NIPAM repeat units is kept at 1:2.2 or 1:2.4, determined by 1H NMR spectroscopy and TGA analysis, respectively, indicating that there are more than 2 but less than 3 NIPAM repeat units included by one γ‐CD molecule. This finding opens new avenues to PPR‐based supramolecular polymers to be used as solid, stimuli‐responsive materials.  相似文献   

15.
Summary: Self‐oscillating polymers and nano‐gel particles consisting of N‐isopropylacrylamide and the ruthenium catalyst of the Belousov‐Zhabotinsky reaction have been prepared. In order to clarify the crosslinking effect on the self‐oscillating behavior, the phase transition behaviors were investigated by measuring the transmittance and the fluorescence intensity of the polymer solution and the gel bead suspension. Cooperative effects due to crosslinking will play an important role for the design of nanoactuators.

Chemical structure of poly(NIPAAm‐co‐Ru(bpy)3).  相似文献   


16.
A new type of glucose‐responsive hydrogel with rapid response to blood glucose concentration change at physiological temperature has been successfully developed. The polymeric hydrogel contains phenylboronic acid (PBA) groups as glucose sensors and thermo‐responsive poly (N‐isopropylacrylamide) (PNIPAM) groups as actuators. The response rate of the hydrogel to environmental glucose concentration change was significantly enhanced by introducing grafted poly(N‐isopropylacrylamide‐co‐3‐acrylamidophenylboronic acid) [poly(NIPAM‐co‐AAPBA)] side chains onto crosslinked poly(NIPAM‐co‐AAPBA) networks for the first time. The synthesized comb‐type grafted poly(NIPAM‐co‐AAPBA) hydrogels showed satisfactory equilibrium glucose‐responsive properties, and exhibited much faster response rate to glucose concentration change than normal type crosslinked poly(NIPAM‐co‐AAPBA) hydrogels at physiological temperature. Such glucose‐responsive hydrogels with rapid response rate are highly attractive in the fields of developing glucose‐responsive sensors and self‐regulated drug delivery systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Porous poly(N‐isopropylacrylamide) hydrogels were prepared by the free‐radical polymerization of its monomer and a suitable crosslinker in the presence of spherical silica particles of different sizes (74 and 1600 nm) and by the subsequent acid extraction of silica. The yields were 81–83%, and the yields were not affected by the silica content. Scanning electron microscopy observations revealed the porous structure of the hydrogels. Porous and nonporous hydrogels showed volume phase transitions from swelling states to deswelling states at approximately 30 °C, as analyzed by the ratio of the diameter of cylinder‐shaped hydrogels to that of the glass tube used for the hydrogel preparation at the corresponding temperature. Deswelling, which was analyzed by rapid changes in the temperature of the aqueous media from 20 to 40 °C, was facilitated by decreased silica particle size and increased silica content. The deswelling rate constant of the hydrogel prepared with 74‐nm silica at 10 v/v % (silica/solvent) was more than 1500 times greater than that of conventional hydrogels. Swelling was similarly analyzed through changes in the temperature from 40 to 20 °C and was independent of the pore structure. The deswelling–swelling cycle was repeatable with reasonable reproducibility. Moreover, the mechanical strength of the porous hydrogels was significantly maintained compared with that of conventional nonporous hydrogels. This method produced thermoresponsive hydrogels of suitable mechanical strength and remarkable deswelling properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4228–4235, 2002  相似文献   

18.
Hydrogels exhibiting a temperature‐dependent release were prepared by incorporating hydrophobically modified poly(N‐isopropylacrylamide) (HmPNIPAM) into β‐cyclodextrin hydrogels (β‐CD hydrogels). The specific loading of HmPNIPAM was about 0.0069 g HmPNIPAM/g β‐CD hydrogels. The incorporation of the polymer was qualitatively conformed by FT‐IR spectroscopy and SEM. The percent release of blue dextran in 24 hr at 20°C (about 77%) was markedly higher than those obtained at 35°C and 45°C (about 53 and 55%, respectively). At the higher temperatures, the volume of the hydrogel could decrease upon the thermal contraction of HmPNIPAM, leading to a smaller mesh and a suppressed release. In fact, the swelling ratio in 24 hr at 35°C and 45°C (about 396% and 405%, respectively) was obviously lower than that obtained at 20°C (about 465%). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A series of block copolymers comprising poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) end‐functionalized with a quaternary ammonium group (RQ) was synthesized by free‐radical polymerization of N‐isopropylacrylamide with well‐defined RQPEO macroazoinitiators. The radical termination occurred mainly by disproportionation, as confirmed by combining the data from size exclusion chromatography (SEC) and rheology measurements. The copolymers denoted RQExNy differ in type of the terminal group [FQ = C8F17(CH3)2N+ or MQ = (CH3)3N+] and in the length of the PEO (Ex; x = 4, 6, or 10 K) and PNIPAM (Ny; y = 7 or 17–19 K) blocks. The type of the terminal group determined the behavior of the block copolymers in the dilute and semidilute regime. Self‐assembled species formed by both FQ and MQ modified block copolymers were detected by static light scattering measurements at 25 °C and above the lower critical solution temperature (LCST). The LCST of the block copolymers depended on the type of the RQ group and the length of the blocks. FQ‐modified copolymers form elastic gels below and above the LCST. It was inferred that the FQ groups and the PNIPAM blocks form segregated microdomains that serve as junctions to maintain a viscoelastic network. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5736–5744, 2004  相似文献   

20.
Summary: Robust thermosensitive PAH‐g‐PNIPAAm/PSS particles were prepared by addition of a poly(allylamine)‐graft‐poly(N‐isopropylacrylamide) particle suspension into poly(styrene sulfonate) solution above the LCST of PAH‐g‐PNIPAAm. Scanning force microscopy revealed stable and well‐separated particles in water at room temperature. The zeta‐potential showed a negative surface charge of the particles. Their thermosensitive behavior was demonstrated by dynamic light scattering. The release of rhodamine 6G loaded particles could respond to the incubation temperature.

Fabrication of thermosensitive and robust particle by suspension of in situ formed PAH‐g‐PNIPAAm particle above the LCST in PSS solution.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号